These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30400478)

  • 21. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.
    Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW
    Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibration Energy Harvester Based on Torsionally Oscillating Magnet.
    Wang X; Li J; Zhou C; Tao K; Qiao D; Li Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.
    Tang Q; Yang Y; Li X
    Rev Sci Instrum; 2014 Apr; 85(4):045004. PubMed ID: 24784650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester.
    Wu Q; Gao S; Jin L; Guo S; Yin Z; Fu H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.
    Kim M; Lee SK; Ham YH; Yang YS; Kwon JK; Kwon KH
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6283-6. PubMed ID: 22962737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet.
    Jackson N
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32429072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads.
    Naito Y; Uenishi K
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The full phase space dynamics of a magnetically levitated electromagnetic vibration harvester.
    Jensen TW; Insinga AR; Ehlers JC; Bjørk R
    Sci Rep; 2021 Aug; 11(1):16607. PubMed ID: 34400665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling and Investigation of Energy Harvesting System Utilizing Magnetically Levitated Permanent Magnet.
    Bijak J; Trawiński T; Szczygieł M; Kowalik Z
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
    Yu H; Yue Q; Zhou J; Wang W
    Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester.
    Zhou Z; Zhang H; Qin W; Zhu P; Du W
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a Novel Two-Directional Piezoelectric Energy Harvester With Permanent Magnets and Multistage Force Amplifier.
    Wen S; Wu Z; Xu Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):840-849. PubMed ID: 31796396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.