These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30400490)

  • 41. Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system.
    Zhang X; Schneider E; Taft G; Kaptyen H; Murnane M; Backus S
    Opt Express; 2012 Mar; 20(7):7015-21. PubMed ID: 22453381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Millisecond laser machining of transparent materials assisted by nanosecond laser.
    Pan Y; Zhang H; Chen J; Han B; Shen Z; Lu J; Ni X
    Opt Express; 2015 Jan; 23(2):765-75. PubMed ID: 25835836
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micro-Drilling of Sapphire using Electro Chemical Discharge Machining.
    Ho CC; Chen JC
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining.
    Ding L; Blackwell R; Kunzler JF; Knox WH
    Opt Express; 2006 Nov; 14(24):11901-9. PubMed ID: 19529613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-power nanosecond ytterbium-doped fiber laser passively synchronized with a femtosecond Ti:sapphire laser.
    Yan M; Li W; Hao Q; Li Y; Yang K; Zhou H; Zeng H
    Opt Lett; 2009 Nov; 34(21):3331-3. PubMed ID: 19881584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Investigation into Laser-Assisted Electrochemical Discharge Machining of Transparent Insulating Hard-Brittle Material.
    Zhao D; Zhang Z; Zhu H; Cao Z; Xu K
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ablation of vitreous tissue with a high repetition rate erbium:YAG laser.
    Krause MH; D'Amico DJ
    Eur J Ophthalmol; 2003 Jun; 13(5):424-32. PubMed ID: 12841564
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of the taper degree of laser-drilled holes via a double-pulse train.
    Fan Y; Wu P; Baba MA; Luo Q; Zhou Q; Deng G; Song H; Wang Y
    Appl Opt; 2019 Sep; 58(26):7028-7034. PubMed ID: 31503971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A split axilla comparison study of axillary hair removal with low fluence high repetition rate 810 nm diode laser vs. high fluence low repetition rate 1064 nm Nd:YAG laser.
    Wanitphakdeedecha R; Thanomkitti K; Sethabutra P; Eimpunth S; Manuskiatti W
    J Eur Acad Dermatol Venereol; 2012 Sep; 26(9):1133-6. PubMed ID: 21923659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual Laser Beam Processing of Semiconducting Thin Films by Excited State Absorption.
    Wenisch C; Engel S; Gräf S; Müller FA
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures.
    Biswas S; Karthikeyan A; Kietzig AM
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Crystal Laser-Heated Pedestal-Growth Sapphire Fibers for Er:YAG Laser Power Delivery.
    Nubling RK; Harrington JA
    Appl Opt; 1998 Jul; 37(21):4777-81. PubMed ID: 18285935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal-spatial dynamics of electronic plasma in a femtosecond laser-induced sapphire microstructure.
    Niu X; Chen T; Zhu W; Shen T; Si J
    Appl Opt; 2023 May; 62(13):3416-3421. PubMed ID: 37132842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High aspect ratio diamond nanosecond laser machining.
    Golota NC; Preiss D; Fredin ZP; Patil P; Banks DP; Bahri S; Griffin RG; Gershenfeld N
    Appl Phys A Mater Sci Process; 2023; 129(7):490. PubMed ID: 37333570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical parameters in the cytotoxicity of photodynamic therapy using a pulsed laser.
    Seguchi K; Kawauchi S; Morimoto Y; Arai T; Asanuma H; Hayakawa M; Kikuchi M
    Lasers Med Sci; 2002; 17(4):265-71. PubMed ID: 12417981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of the laser fluence in infrared matrix-assisted laser desorption/ionization with a 2.94 microm Er : YAG laser and a flat-top beam profile.
    Feldhaus D; Menzel C; Berkenkamp S; Hillenkamp F; Dreisewerd K
    J Mass Spectrom; 2000 Nov; 35(11):1320-8. PubMed ID: 11114091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation.
    Campanelli SL; Lavecchia F; Contuzzi N; Percoco G
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser.
    Zhang J; Sugioka K; Midorikawa K
    Opt Lett; 1998 Sep; 23(18):1486-8. PubMed ID: 18091825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gain-switched Ti:sapphire laser-based photoacoustic imaging.
    Lee J; Lee YJ; Jeong EJ; Jung MY; Lee S; Kim BK; Song DH
    Appl Opt; 2016 Jul; 55(20):5419-22. PubMed ID: 27409320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of Trepanning Patterns for Holes Ablated Using Nanosecond Pulse Laser in Al
    Zhao W; Mei X
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.