BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30400501)

  • 1. Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems.
    Udvardi P; Radó J; Straszner A; Ferencz J; Hajnal Z; Soleimani S; Schneider M; Schmid U; Révész P; Volk J
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure.
    Yang C; Hu B; Lu L; Wang Z; Liu W; Sun C
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices.
    Gesing AL; Alves FDP; Paul S; Cordioli JA
    Sci Rep; 2018 Mar; 8(1):3920. PubMed ID: 29500435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and Efficient AlN-Based Piezoelectric Energy Harvesters.
    Gablech I; Klempa J; Pekárek J; Vyroubal P; Hrabina J; Holá M; Kunz J; Brodský J; Neužil P
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Sensitivity MEMS Accelerometer Using a Sc
    Zhang Z; Zhang L; Wu Z; Gao Y; Lou L
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application.
    Kim M; Hwang B; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6011-5. PubMed ID: 22966699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity enhancement of a folded beam MEMS capacitive accelerometer-based microphone for fully implantable hearing application.
    Dwivedi A; Khanna G
    Biomed Tech (Berl); 2018 Nov; 63(6):699-708. PubMed ID: 29087950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on Parametric Amplification in a Piezoelectric MEMS Device.
    Gonzalez M; Lee Y
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration.
    Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum Nitride to Silicon Direct Bonding for an Alternative Silicon-On-Insulator Platform.
    Kaaos J; Ross G; Paulasto-Kröckel M
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38857-38865. PubMed ID: 34347425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.
    Chun I; Lee HW; Kwon KH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9253-7. PubMed ID: 25971046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Micromachined Coupled-Cantilever for Piezoelectric Energy Harvesters.
    Vyas A; Staaf H; Rusu C; Ebefors T; Liljeholm J; Smith AD; Lundgren P; Enoksson P
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.
    Kim M; Lee SK; Yang YS; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7932-7. PubMed ID: 24266167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized Multi-Cantilever MEMS Resonators with Low Motional Impedance.
    Li H; Yang Q; Yuan Y; Shi S; Niu P; Li Q; Chen X; Zhang M; Pang W
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Packaging Technology for an Implantable Inner Ear MEMS Microphone.
    Prochazka L; Huber A; Dobrev I; Harris F; Dalbert A; Röösli C; Obrist D; Pfiffner F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An implantable piezoelectric hearing aid transducer for inner ear hearing loss. I: Development of a prototype].
    Leysieffer H; Baumann JW; Müller G; Zenner HP
    HNO; 1997 Oct; 45(10):792-800. PubMed ID: 9445852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.