These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30400501)

  • 41. Miniaturized 0.13-μm CMOS Front-End Analog for AlN PMUT Arrays.
    Zamora I; Ledesma E; Uranga A; Barniol N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting.
    Kim M; Hwang B; Min NK; Jeong J; Kwon KH; Park KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6510-3. PubMed ID: 22121746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Active electronic cochlear implants for middle and inner ear hearing loss--a new era in ear surgery. I: Basic principles and recommendations on nomenclature].
    Zenner HP; Leysieffer H
    HNO; 1997 Oct; 45(10):749-57. PubMed ID: 9445847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioinspired Multiresonant Acoustic Devices Based on Electrospun Piezoelectric Polymeric Nanofibers.
    Viola G; Chang J; Maltby T; Steckler F; Jomaa M; Sun J; Edusei J; Zhang D; Vilches A; Gao S; Liu X; Saeed S; Zabalawi H; Gale J; Song W
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34643-34657. PubMed ID: 32639712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Concept and Evaluation of a New Piezoelectric Transducer for an Implantable Middle Ear Hearing Device.
    Liu H; Cheng J; Yang J; Rao Z; Cheng G; Yang S; Huang X; Wang M
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099047
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors.
    Torres F; Uranga A; Riverola M; Sobreviela G; Barniol N
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.
    Shin DH; Cho JH
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795018
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems.
    Vancura C; Rüegg M; Li Y; Hagleitner C; Hierlemann A
    Anal Chem; 2005 May; 77(9):2690-9. PubMed ID: 15859582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MEMS piezoelectric resonant microphone array for lung sound classification.
    Liu H; Barekatain M; Roy A; Liu S; Cao Y; Tang Y; Shkel A; Kim ES
    J Micromech Microeng; 2023 Apr; 33(4):044003. PubMed ID: 36911255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Robust Fully-Integrated Digital-Output Inductive CMOS-MEMS Accelerometer with Improved Inductor Quality Factor.
    Chiu Y; Liu HW; Hong HC
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [An implantable piezoelectric hearing aid transducer for inner ear deafness. II: Clinical implant].
    Leysieffer H; Baumann JW; Müller G; Zenner HP
    HNO; 1997 Oct; 45(10):801-15. PubMed ID: 9445853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.
    Dennis JO; Ahmed AY; Khir MH
    Sensors (Basel); 2015 Jul; 15(7):16674-87. PubMed ID: 26184204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shear-Mode-Based Cantilever Driving Low-Frequency Piezoelectric Energy Harvester Using 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3.
    Zeng Z; Ren B; Gai L; Zhao X; Luo H; Wang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1192-7. PubMed ID: 27244735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a semi-implantable hearing device for direct acoustic cochlear stimulation.
    Bernhard H; Stieger C; Perriard Y
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):420-8. PubMed ID: 20959263
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CMOS MEMS Fabrication Technologies and Devices.
    Qu H
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach.
    Dwivedi A; Khanna G
    Biomed Tech (Berl); 2020 Jul; ():. PubMed ID: 32621727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Principles of energy sources of totally implantable hearing aids for inner ear hearing loss].
    Baumann JW; Leysieffer H
    HNO; 1998 Feb; 46(2):121-8. PubMed ID: 9556710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 2D Scanning Micromirror with Large Scan Angle and Monolithically Integrated Angle Sensors Based on Piezoelectric Thin Film Aluminum Nitride.
    Meinel K; Melzer M; Stoeckel C; Shaporin A; Forke R; Zimmermann S; Hiller K; Otto T; Kuhn H
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Cochlear implant in children: rational, indications and cost/efficacy].
    Martini A; Bovo R; Trevisi P; Forli F; Berrettini S
    Minerva Pediatr; 2013 Jun; 65(3):325-39. PubMed ID: 23685383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implementation of a CMOS/MEMS Accelerometer with ASIC Processes.
    Liu YS; Wen KA
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.