These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 30400549)

  • 1. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices.
    Dinis H; Colmiais I; Mendes PM
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power Approaches for Implantable Medical Devices.
    Ben Amar A; Kouki AB; Cao H
    Sensors (Basel); 2015 Nov; 15(11):28889-914. PubMed ID: 26580626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices.
    Li Y; Chen Z; Liu Y; Liu Z; Wu T; Zhang Y; Peng L; Huang X; Huang S; Lin X; Xie X; Jiang L
    Natl Sci Rev; 2024 May; 11(5):nwae062. PubMed ID: 38628571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimally invasive power sources for implantable electronics.
    Xu M; Liu Y; Yang K; Li S; Wang M; Wang J; Yang D; Shkunov M; Silva SRP; Castro FA; Zhao Y
    Exploration (Beijing); 2024 Feb; 4(1):20220106. PubMed ID: 38854488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method of Wireless Micro Energy Transmission Based on MEMS Micro Coil.
    Wang Y; Yi C; Meng F; Sun X
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices.
    Gao Z; Zhou Y; Zhang J; Foroughi J; Peng S; Baughman RH; Wang ZL; Wang CH
    Adv Mater; 2024 Jun; ():e2404492. PubMed ID: 38935237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants.
    Mukherjee D; Rainu SK; Singh N; Mallick D
    IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Q-Modulation Technique for Efficient Inductive Power Transmission.
    Kiani M; Lee B; Yeon P; Ghovanloo M
    IEEE J Solid-State Circuits; 2015 Dec; 50(12):2839-2848. PubMed ID: 27087699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions.
    Zheng Y; Zhang Z; Zhang Y; Pan Q; Yan X; Li X; Yang Z
    Adv Mater; 2024 Jul; ():e2407395. PubMed ID: 39044603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MagSonic: Hybrid Magnetic-Ultrasonic Wireless Interrogation of Millimeter-Scale Biomedical Implants With Magnetoelectric Transducer.
    Hosur S; Kashani Z; Karan SK; Priya S; Kiani M
    IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):383-395. PubMed ID: 37976195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring.
    Li D; Zhou J; Zhao Z; Huang X; Li H; Qu Q; Zhou C; Yao K; Liu Y; Wu M; Su J; Shi R; Huang Y; Wang J; Zhang Z; Liu Y; Gao Z; Park W; Jia H; Guo X; Zhang J; Chirarattananon P; Chang L; Xie Z; Yu X
    Sci Adv; 2024 Jan; 10(2):eadk6301. PubMed ID: 38198552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and Experimental Investigation of Time-Domain-Reflectometry-Based Sensors for Foreign Object Detection in Wireless Power Transfer Systems.
    Helwig M; Xu Y; Hentschel U; Winkler A; Modler N
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy.
    Magisetty R; Park SM
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro demonstration of a passive, acoustic metamaterial as a temperature sensor with mK resolution for implantable applications.
    Maini L; Genovés V; Furrer R; Cesarovic N; Hierold C; Roman C
    Microsyst Nanoeng; 2024; 10():8. PubMed ID: 38261856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless agents for brain recording and stimulation modalities.
    Bok I; Vareberg A; Gokhale Y; Bhatt S; Masterson E; Phillips J; Zhu T; Ren X; Hai A
    Bioelectron Med; 2023 Sep; 9(1):20. PubMed ID: 37726851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.
    McAdams I; Kenyon H; Bourbeau D; Damaser MS; Zorman C; Majerus SJA
    IEEE Biomed Circuits Syst Conf; 2018 Oct; 2018():. PubMed ID: 32064467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss-Optimized Design of Magnetic Devices.
    Zhao Y; Ming Z; Du C
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Millimetric devices for nerve stimulation: a promising path towards miniaturization.
    Dorrian RM; Leonard AV; Lauto A
    Neural Regen Res; 2024 Aug; 19(8):1702-1706. PubMed ID: 38103235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless powering solution for implantable electronics based on ultra-low frequency magnetic energy focusing.
    Wang H; Yu X
    Natl Sci Rev; 2024 Jun; 11(6):nwae140. PubMed ID: 38725936
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.