These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30400553)

  • 1. Enabling Droplet Functionality on Anisotropic Ratchet Conveyors.
    Holmes HR; Gomez AE; Böhringer KF
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport velocity of droplets on ratchet conveyors.
    Holmes HR; Böhringer KF
    Adv Colloid Interface Sci; 2018 May; 255():18-25. PubMed ID: 28927830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration Induced Transport of Enclosed Droplets.
    Holmes HR; Böhringer KF
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converting Vertical Vibration of Anisotropic Ratchet Conveyors into Horizontal Droplet Motion.
    Dong Y; Holmes HR; Böhringer KF
    Langmuir; 2017 Oct; 33(40):10745-10752. PubMed ID: 28929766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An active self-cleaning surface system for photovoltaic modules using anisotropic ratchet conveyors and mechanical vibration.
    Sun D; Böhringer KF
    Microsyst Nanoeng; 2020; 6():87. PubMed ID: 34567697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Driven Liquid Conveyors: Manipulating Liquid Mobility and Transporting Solids on Demand.
    Manabe K; Saito K; Nakano M; Ohzono T; Norikane Y
    ACS Nano; 2022 Oct; 16(10):16353-16362. PubMed ID: 36222696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves.
    Song Y; Jiang S; Li G; Zhang Y; Wu H; Xue C; You H; Zhang D; Cai Y; Zhu J; Zhu W; Li J; Hu Y; Wu D; Chu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42264-42273. PubMed ID: 32816455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction.
    Lee Y; Amberg G; Shiomi J
    PNAS Nexus; 2022 May; 1(2):pgac027. PubMed ID: 36713314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces.
    Son C; Yang Z; Kim S; Ferreira PM; Feng J; Kim S
    ACS Nano; 2023 Dec; 17(23):23702-23713. PubMed ID: 37856876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Magnetically Actuated Superhydrophobic Ratchet Surface for Droplet Manipulation.
    Son C; Ji B; Park J; Feng J; Kim S
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33808660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Self-Propulsion on Superhydrophobic Microtracks.
    Stamatopoulos C; Milionis A; Ackerl N; Donati M; Leudet de la Vallée P; Rudolf von Rohr P; Poulikakos D
    ACS Nano; 2020 Oct; 14(10):12895-12904. PubMed ID: 32806052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorting of droplets by migration on structured surfaces.
    Konrad W; Roth-Nebelsick A
    Beilstein J Nanotechnol; 2011; 2():215-21. PubMed ID: 21977433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-induced dielectrophoretic droplet manipulation platform.
    Park SY; Kalim S; Callahan C; Teitell MA; Chiou EP
    Lab Chip; 2009 Nov; 9(22):3228-35. PubMed ID: 19865729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biocompatible Vibration-Actuated Omni-Droplets Rectifier with Large Volume Range Fabricated by Femtosecond Laser.
    Zhang Y; Li J; Xiang L; Wang J; Wu T; Jiao Y; Jiang S; Li C; Fan S; Zhang J; Wu H; Zhang Y; Bian Y; Zhao K; Peng Y; Zhu W; Li J; Hu Y; Wu D; Chu J; Wang Z
    Adv Mater; 2022 Mar; 34(12):e2108567. PubMed ID: 34865264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet delivery and nebulization system using surface acoustic wave for mass spectrometry.
    Sun D; Böhringer KF; Sorensen M; Nilsson E; Edgar JS; Goodlett DR
    Lab Chip; 2020 Aug; 20(17):3269-3277. PubMed ID: 32760973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Describing Droplet Motion on Surface-Textured Ratchet Tracks with an Inverted Double Pendulum Model.
    Naji M; Yelekli Kirici E; Javili A; Erdem EY
    Langmuir; 2021 Apr; 37(16):4810-4816. PubMed ID: 33852311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.