These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30400557)

  • 1. Optic Nerve Stimulation System with Adaptive Wireless Powering and Data Telemetry.
    Li X; Lu Y; Meng X; Tsui CY; Ki WH
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-power low-voltage current readout circuit for inductively powered implant system.
    Haider MR; Islam SK; Mostafa S; Mo Zhang ; Taeho Oh
    IEEE Trans Biomed Circuits Syst; 2010 Aug; 4(4):205-13. PubMed ID: 23853366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants.
    RamRakhyani AK; Lazzi G
    Healthc Technol Lett; 2014 Jan; 1(1):21-5. PubMed ID: 26609371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-power bidirectional telemetry device with a near-field charging feature for a cardiac microstimulator.
    Shuenn-Yuh Lee ; Chih-Jen Cheng ; Ming-Chun Liang
    IEEE Trans Biomed Circuits Syst; 2011 Aug; 5(4):357-67. PubMed ID: 23851950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 27-Mbps, 0.08-mm
    Thimot J; Kim K; Shi C; Shepard KL
    Proc Cust Integr Circuits Conf; 2020 Mar; 2020():. PubMed ID: 34305311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microbead: A Highly Miniaturized Wirelessly Powered Implantable Neural Stimulating System.
    Khalifa A; Karimi Y; Wang Q; Garikapati S; Montlouis W; Stanacevic M; Thakor N; Etienne-Cummings R
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):521-531. PubMed ID: 29877816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wirelessly powered electro-acupuncture based on adaptive pulsewidth monophase stimulation.
    Kiseok Song ; Long Yan ; Seulki Lee ; Yoo J; Hoi-Jun Yoo
    IEEE Trans Biomed Circuits Syst; 2011 Apr; 5(2):138-46. PubMed ID: 23851202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Torque and Power Transfer Using Multiple Coils with LCC-S Topology for Implantable Medical Drug Pump.
    Rhee J; Shin Y; Woo S; Lee C; Kim D; Ahn J; Kim H; Ahn S
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimally Invasive Hypoglossal Nerve Stimulator Enabled by ECG Sensor and WPT to Manage Obstructive Sleep Apnea.
    Xia F; Li H; Li Y; Liu X; Xu Y; Fang C; Hou Q; Lin S; Zhang Z; Yang J; Sawan M
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant.
    Yu Z; Chen JC; Alrashdan FT; Avants BW; He Y; Singer A; Robinson JT; Yang K
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1241-1252. PubMed ID: 33180732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation.
    Shah J; Quinkert C; Collar B; Williams M; Biggs E; Irazoqui P
    IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):233-243. PubMed ID: 35201991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.
    Lee B; Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):138-48. PubMed ID: 25667358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device.
    Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized Wirelessly Powered and Controlled Implants for Multisite Stimulation.
    Habibagahi I; Jang J; Babakhani A
    IEEE Trans Microw Theory Tech; 2023 May; 71(5):1911-1922. PubMed ID: 38645708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies.
    Liu F; Wu Y; Almarri N; Habibollahi M; Lancashire HT; Bryson B; Greensmith L; Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):752-765. PubMed ID: 36018872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load shift keying communication techniques in implantable devices.
    Pastene F; Westermeyer M; Verstraeten M; Debelle A; Acuña V; Nonclercq A; Aqueveque P
    Phys Eng Sci Med; 2024 Aug; ():. PubMed ID: 39158764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device.
    Jia Y; Gong Y; Weber A; Li W; Ghovanloo M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32630557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.