These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 30400593)
1. Three-Dimensional Hierarchical Reticular Nanostructure of Wang M; Wang Y; Yan X; Sun X; Shi G; Zhang K; Ren L; Ma W Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400593 [TBL] [Abstract][Full Text] [Related]
2. Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin. Wang Y; Wang M; Sun X; Shi G; Zhang J; Ma W; Ren L Opt Express; 2018 Aug; 26(17):22168-22181. PubMed ID: 30130914 [TBL] [Abstract][Full Text] [Related]
3. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. Shao F; Lu Z; Liu C; Han H; Chen K; Li W; He Q; Peng H; Chen J ACS Appl Mater Interfaces; 2014 May; 6(9):6281-9. PubMed ID: 24359537 [TBL] [Abstract][Full Text] [Related]
5. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Li Z; Jiang S; Huo Y; Ning T; Liu A; Zhang C; He Y; Wang M; Li C; Man B Nanoscale; 2018 Mar; 10(13):5897-5905. PubMed ID: 29546897 [TBL] [Abstract][Full Text] [Related]
6. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants. Su G; Dang L; Liu G; Feng T; Wang W; Wang C; Wei H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120818. PubMed ID: 34999358 [TBL] [Abstract][Full Text] [Related]
7. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related]
8. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing. Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111 [TBL] [Abstract][Full Text] [Related]
9. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. Li R; Gui B; Mao H; Yang Y; Chen D; Xiong J ACS Sens; 2020 Nov; 5(11):3420-3431. PubMed ID: 32929960 [TBL] [Abstract][Full Text] [Related]
10. LSPR Tunable Ag@PDMS SERS Substrate for High Sensitivity and Uniformity Detection of Dye Molecules. Yan X; Shi H; Jia P; Sun X Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364670 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524 [TBL] [Abstract][Full Text] [Related]
13. Facile fabrication of silver nanoparticle decorated α-Fe Bekana D; Liu R; Li S; Lai Y; Liu JF Anal Chim Acta; 2018 May; 1006():74-82. PubMed ID: 30016266 [TBL] [Abstract][Full Text] [Related]
15. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection. Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325 [TBL] [Abstract][Full Text] [Related]
16. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules. Sun G; Fu C; Dong M; Jin G; Song Q Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120743. PubMed ID: 34942414 [TBL] [Abstract][Full Text] [Related]
17. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography. Zhao X; Wen J; Zhang M; Wang D; Wang Y; Chen L; Zhang Y; Yang J; Du Y ACS Appl Mater Interfaces; 2017 Mar; 9(8):7710-7716. PubMed ID: 28191921 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles. Zhang X; Xiao X; Dai Z; Wu W; Zhang X; Fu L; Jiang C Nanoscale; 2017 Mar; 9(9):3114-3120. PubMed ID: 28203665 [TBL] [Abstract][Full Text] [Related]
19. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection. Sun M; Zhang H; Li H; Hao X; Wang C; Li L; Yang Z; Tian C Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123153. PubMed ID: 37473663 [TBL] [Abstract][Full Text] [Related]
20. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Sinha SS; Jones S; Pramanik A; Ray PC Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]