These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 30400917)
1. Assessment of a markerless motion analysis system for manual wheelchair application. Rammer J; Slavens B; Krzak J; Winters J; Riedel S; Harris G J Neuroeng Rehabil; 2018 Nov; 15(1):96. PubMed ID: 30400917 [TBL] [Abstract][Full Text] [Related]
2. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514 [TBL] [Abstract][Full Text] [Related]
3. Reliability and validity of the Microsoft Kinect for assessment of manual wheelchair propulsion. Milgrom R; Foreman M; Standeven J; Engsberg JR; Morgan KA J Rehabil Res Dev; 2016; 53(6):901-918. PubMed ID: 28475198 [TBL] [Abstract][Full Text] [Related]
4. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia. Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111 [TBL] [Abstract][Full Text] [Related]
5. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles. Rice I; Gagnon D; Gallagher J; Boninger M J Spinal Cord Med; 2010; 33(1):33-42. PubMed ID: 20397442 [TBL] [Abstract][Full Text] [Related]
6. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study. Morgan KA; Tucker SM; Klaesner JW; Engsberg JR J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Sex on Upper Extremity Joint Dynamics in Pediatric Manual Wheelchair Users With Spinal Cord Injury. Hanks MM; Leonardis JM; Schnorenberg AJ; Krzak JJ; Graf A; Vogel LC; Harris GF; Slavens BA Top Spinal Cord Inj Rehabil; 2021; 27(3):26-37. PubMed ID: 34456544 [TBL] [Abstract][Full Text] [Related]
9. Feasibility and Validity of Wearable Sensors for Monitoring Temporal Parameters in Manual Wheelchair Propulsion. Fathian R; Khandan A; Rahmanifar N; Ho C; Rouhani H IEEE J Biomed Health Inform; 2024 Sep; 28(9):5239-5246. PubMed ID: 38814765 [TBL] [Abstract][Full Text] [Related]
10. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs. Briley SJ; Vegter RJK; Tolfrey VL; Mason BS J Biomech; 2020 May; 104():109725. PubMed ID: 32173030 [TBL] [Abstract][Full Text] [Related]
11. Scapular kinematics during manual wheelchair propulsion in able-bodied participants. Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ Clin Biomech (Bristol); 2018 May; 54():54-61. PubMed ID: 29554550 [TBL] [Abstract][Full Text] [Related]
12. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics. Symonds A; Barbareschi G; Taylor S; Holloway C Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100 [TBL] [Abstract][Full Text] [Related]
13. Detecting clinical practice guideline-recommended wheelchair propulsion patterns with wearable devices following a wheelchair propulsion intervention. Chen PW; Klaesner J; Zwir I; Morgan KA Assist Technol; 2023 Mar; 35(2):193-201. PubMed ID: 34814806 [TBL] [Abstract][Full Text] [Related]
14. Relationship between rolling resistance, preferred speed, and manual wheelchair propulsion mechanics in non-disabled adults. Soleymani H; Cowan R Disabil Rehabil Assist Technol; 2024 Jul; 19(5):1980-1991. PubMed ID: 37493253 [TBL] [Abstract][Full Text] [Related]