These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3040169)

  • 41. alpha-Noradrenergic potentiation of neurotransmitter-stimulated cAMP production in rat striatal slices.
    Leblanc GG; Ciaranello RD
    Brain Res; 1984 Feb; 293(1):57-65. PubMed ID: 6322919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prostaglandin F2 alpha and alpha-adrenergic agonists regulate parathyroid cell function via the inhibitory guanine nucleotide regulatory protein.
    Fitzpatrick LA; Brandi ML; Aurbach GD
    Endocrinology; 1986 May; 118(5):2115-9. PubMed ID: 2870912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alpha 2-adrenergic receptors regulate generation of cyclic AMP in the pineal gland, but not in cerebral cortex of chick.
    Nowak JZ; Zawilska JB; Trzepizur K
    Pol J Pharmacol; 1997; 49(2-3):137-41. PubMed ID: 9437760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures.
    Pratt BL; Takahashi JS
    Endocrinology; 1988 Jul; 123(1):277-83. PubMed ID: 2838256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulation of adenosine 3',5'-monophosphate formation in rat cerebral cortical slices by methoxamine: interaction with an alpha adrenergic receptor.
    Skolnick P; Daly JW
    J Pharmacol Exp Ther; 1975 May; 193(2):549-58. PubMed ID: 238025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacologic evidence for 5-HT1A receptors associated with human retinal pigment epithelial cells in culture.
    Nash MS; Osborne NN
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):510-9. PubMed ID: 9040484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-adrenergic receptors, cyclic AMP, and ion transport in the avian erythrocyte.
    Aurbach GD; Spiegel AM; Gardner JD
    Adv Cyclic Nucleotide Res; 1975; 5():117-32. PubMed ID: 165661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Apparent absence of alpha-2 adrenergic receptors from hamster brown adipocytes.
    McMahon KK; Schimmel RJ
    Life Sci; 1982 Apr; 30(14):1185-92. PubMed ID: 6283284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacological characterization of metabotropic glutamate receptors in several types of brain cells in primary cultures.
    Prézeau L; Carrette J; Helpap B; Curry K; Pin JP; Bockaert J
    Mol Pharmacol; 1994 Apr; 45(4):570-7. PubMed ID: 8183235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action of alpha 2A-adrenergic receptors in circular smooth muscle of canine proximal colon.
    Zhang L; Keef KD; Bradley ME; Buxton IL
    Am J Physiol; 1992 Mar; 262(3 Pt 1):G517-24. PubMed ID: 1312795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Guanine nucleotide binding proteins and the regulation of cyclic AMP synthesis in NS20Y neuroblastoma cells: role of D1 dopamine and muscarinic receptors.
    Lovenberg TW; Nichols DE; Nestler EJ; Roth RH; Mailman RB
    Brain Res; 1991 Aug; 556(1):101-7. PubMed ID: 1682005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary cultures from defined brain areas; effects of seeding time on the development of beta-adrenergic- and dopamine-stimulated cAMP-activity during cultivation.
    Hansson E
    Brain Res; 1985 Aug; 353(2):187-92. PubMed ID: 2994849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of alpha 2-adrenergic action on cyclic AMP levels in canine thyroid slices.
    Yamashita K; Yamashita S; Aiyoshi Y
    Life Sci; 1980 Sep; 27(13):1127-30. PubMed ID: 6252401
    [No Abstract]   [Full Text] [Related]  

  • 54. Progesterone depression of norepinephrine-stimulated cAMP accumulation in hypothalamic slices.
    Petitti N; Etgen AM
    Brain Res Mol Brain Res; 1989 Mar; 5(2):109-19. PubMed ID: 2541302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neurotensin-mediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: involvement of the inhibitory GTP-binding component of adenylate cyclase.
    Bozou JC; Amar S; Vincent JP; Kitabgi P
    Mol Pharmacol; 1986 May; 29(5):489-96. PubMed ID: 3010077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of dihydroergotoxine on cyclic-AMP-generating systems in rat cerebral cortex slices.
    Markstein R; Wagner H
    Gerontology; 1978; 24 Suppl 1():94-105. PubMed ID: 201544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional alpha 2-adrenoceptors in rat adipocytes: inhibition of cyclic AMP accumulation.
    García-Sáinz JA; Martínez OM
    Biochem Int; 1989 Oct; 19(4):899-907. PubMed ID: 2559733
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of cyclic adenosine 3',5'-monophosphate levels in guinea-pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity.
    Sattin A; Rall TW; Zanella J
    J Pharmacol Exp Ther; 1975 Jan; 192(1):22-32. PubMed ID: 235635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vasoactive intestinal peptide actions on cyclic AMP levels in cultured striatal neurons.
    Weiss S; Sebben M; Kemp DE; Bockaert J
    Peptides; 1986; 7 Suppl 1():187-92. PubMed ID: 3018697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lateral difference in responsiveness of norepinephrine-sensitive cyclic AMP-generating systems of rat cerebral cortex with iron-induced epileptic activity.
    Moriwaki A; Hattori Y; Yasuhara H; Hori Y
    Brain Res; 1988 Sep; 461(1):190-3. PubMed ID: 2852048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.