These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30401734)

  • 1. Noncoding transcription influences the replication initiation program through chromatin regulation.
    Soudet J; Gill JK; Stutz F
    Genome Res; 2018 Dec; 28(12):1882-1893. PubMed ID: 30401734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine Chromatin-Driven Mechanism of Transcription Interference by Antisense Noncoding Transcription.
    Gill JK; Maffioletti A; García-Molinero V; Stutz F; Soudet J
    Cell Rep; 2020 May; 31(5):107612. PubMed ID: 32375040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.
    Soriano I; Morafraile EC; Vázquez E; Antequera F; Segurado M
    BMC Genomics; 2014 Sep; 15(1):791. PubMed ID: 25218085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.
    Berbenetz NM; Nislow C; Brown GW
    PLoS Genet; 2010 Sep; 6(9):e1001092. PubMed ID: 20824081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activities of eukaryotic replication origins in chromatin.
    Weinreich M; Palacios DeBeer MA; Fox CA
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):142-57. PubMed ID: 15020055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chromatin-based mechanism for limiting divergent noncoding transcription.
    Marquardt S; Escalante-Chong R; Pho N; Wang J; Churchman LS; Springer M; Buratowski S
    Cell; 2014 Jun; 157(7):1712-23. PubMed ID: 24949978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II.
    Thebault P; Boutin G; Bhat W; Rufiange A; Martens J; Nourani A
    Mol Cell Biol; 2011 Mar; 31(6):1288-300. PubMed ID: 21220514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control.
    Dorn ES; Cook JG
    Epigenetics; 2011 May; 6(5):552-9. PubMed ID: 21364325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
    Gossett AJ; Lieb JD
    PLoS Genet; 2012; 8(6):e1002771. PubMed ID: 22737086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Regulation of ECM3 Expression by Methylation of Histone H3 Lysine 4 and Intergenic Transcription in Saccharomyces cerevisiae.
    Raupach EA; Martens JA; Arndt KM
    G3 (Bethesda); 2016 Sep; 6(9):2971-81. PubMed ID: 27449519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin remodelling at promoters suppresses antisense transcription.
    Whitehouse I; Rando OJ; Delrow J; Tsukiyama T
    Nature; 2007 Dec; 450(7172):1031-5. PubMed ID: 18075583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription.
    Hildreth AE; Ellison MA; Francette AM; Seraly JM; Lotka LM; Arndt KM
    Elife; 2020 Aug; 9():. PubMed ID: 32845241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosomes influence multiple steps during replication initiation.
    Azmi IF; Watanabe S; Maloney MF; Kang S; Belsky JA; MacAlpine DM; Peterson CL; Bell SP
    Elife; 2017 Mar; 6():. PubMed ID: 28322723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork.
    Gutiérrez MP; MacAlpine HK; MacAlpine DM
    Genome Res; 2019 Jul; 29(7):1123-1133. PubMed ID: 31217252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the
    Cutler S; Lee LJ; Tsukiyama T
    Genetics; 2018 Dec; 210(4):1543-1556. PubMed ID: 30355728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
    Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP
    EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.
    Fennessy RT; Owen-Hughes T
    Nucleic Acids Res; 2016 Sep; 44(15):7189-203. PubMed ID: 27106059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae.
    Knott SR; Viggiani CJ; Tavaré S; Aparicio OM
    Genes Dev; 2009 May; 23(9):1077-90. PubMed ID: 19417103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide.
    Rao B; Shibata Y; Strahl BD; Lieb JD
    Mol Cell Biol; 2005 Nov; 25(21):9447-59. PubMed ID: 16227595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.