BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3040190)

  • 41. Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase.
    Lachica EA; Beck PD; Casagrande VA
    J Comp Neurol; 1993 Mar; 329(2):163-87. PubMed ID: 8384222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinofugal projections in the short-tailed opossum (Monodelphis domestica).
    Kahn DM; Krubitzer L
    J Comp Neurol; 2002 May; 447(2):114-27. PubMed ID: 11977115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology.
    Lachica EA; Casagrande VA
    J Comp Neurol; 1992 May; 319(1):141-58. PubMed ID: 1375606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vimentin: changes in distribution during brain development.
    Hutchins JB; Casagrande VA
    Glia; 1989; 2(1):55-66. PubMed ID: 2523339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regional differences in normally occurring cell death in the developing hamster lateral geniculate nuclei.
    Sengelaub DR; Jacobs LF; Finlay BL
    Neurosci Lett; 1985 Apr; 55(2):103-8. PubMed ID: 4000538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus.
    Yan YH; Winarto A; Mansjoer I; Hendrickson A
    J Neurobiol; 1996 Oct; 31(2):189-209. PubMed ID: 8885200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway.
    Tieman SB; Neale JH; Tieman DG
    J Comp Neurol; 1991 Nov; 313(1):45-64. PubMed ID: 1662235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential effects of cortical neurotrophic factors on development of lateral geniculate nucleus and superior colliculus neurons: anterograde and retrograde actions.
    Wahle P; Di Cristo G; Schwerdtfeger G; Engelhardt M; Berardi N; Maffei L
    Development; 2003 Feb; 130(3):611-22. PubMed ID: 12490566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An ultrastructural and morphometric study of the effect of removal of retinal input on the development of the dorsal lateral geniculate nucleus.
    Brunso-Bechtold JK; Vinsant SL
    J Comp Neurol; 1990 Nov; 301(4):585-603. PubMed ID: 2273100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of the projections from the dorsal lateral geniculate nucleus to the lateral suprasylvian visual area of cortex in the cat.
    Tong LL; Kalil RE; Spear PD
    J Comp Neurol; 1991 Dec; 314(3):526-33. PubMed ID: 1726109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys.
    Atapour N; Worthy KH; Lui LL; Yu HH; Rosa MGP
    Brain Struct Funct; 2017 Sep; 222(7):3283-3293. PubMed ID: 28331974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development.
    Horng S; Kreiman G; Ellsworth C; Page D; Blank M; Millen K; Sur M
    J Neurosci; 2009 Oct; 29(43):13672-83. PubMed ID: 19864579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The distribution of crossed and uncrossed optic fibers in the different layers of the lateral geniculate nucleus in the tree shrew (Tupaia glis).
    Hajdu F; Hassler R; Wagner A
    Anat Embryol (Berl); 1982; 164(1):1-8. PubMed ID: 7114482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of bicuculline on signal detectability in lateral geniculate nucleus relay cells.
    Holdefer RN; Norton TT; Godwin DW
    Brain Res; 1989 May; 488(1-2):341-7. PubMed ID: 2743129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents.
    Guillery RW; Ombrellaro M; LaMantia AL
    Brain Res; 1985 Jun; 352(2):221-33. PubMed ID: 4027668
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effect of visual deprivation on cytochrome oxidase levels in major cell classes of the cat LGN.
    Kageyama GH; Wong-Riley M
    J Comp Neurol; 1986 Apr; 246(2):212-37. PubMed ID: 3007586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Terminal arbors of single ON-center and OFF-center X and Y retinal ganglion cell axons within the ferret's lateral geniculate nucleus.
    Roe AW; Garraghty PE; Sur M
    J Comp Neurol; 1989 Oct; 288(2):208-42. PubMed ID: 2477415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age dependent modification of cytochrome oxidase activity in the cat dorsal lateral geniculate nucleus following removal of primary visual cortex.
    Payne BR; Lomber SG
    Vis Neurosci; 1996; 13(5):805-16. PubMed ID: 8903025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An analysis of the cellular localization of cytochrome oxidase in the lateral geniculate nucleus of the adult cat.
    Kageyama GH; Wong-Riley M
    J Comp Neurol; 1985 Dec; 242(3):338-57. PubMed ID: 2418075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.