BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 3040191)

  • 1. Development of neuronal activity in the rat suprachiasmatic nucleus.
    Shibata S; Moore RY
    Brain Res; 1987 Aug; 431(2):311-5. PubMed ID: 3040191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mouse suprachiasmatic nucleus encodes irradiance via a diverse population of neurons monotonically tuned to different ranges of intensity.
    Orlowska-Feuer P; Bano-Otalora B; Rodgers J; Martial FP; Storchi R; Lucas RJ
    J Physiol; 2023 Nov; 601(21):4737-4749. PubMed ID: 37777993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kv12-encoded K+ channels drive the day-night switch in the repetitive firing rates of SCN neurons.
    Hermanstyne TO; Yang ND; Granados-Fuentes D; Li X; Mellor RL; Jegla T; Herzog ED; Nerbonne JM
    J Gen Physiol; 2023 Sep; 155(9):. PubMed ID: 37516908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kv12-Encoded K
    Hermanstyne TO; Yang ND; Granados-Fuentes D; Li X; Mellor RL; Jegla T; Herzog ED; Nerbonne JM
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new player in circadian networks: Role of electrical synapses in regulating functions of the circadian clock.
    Iyer AR; Sheeba V
    Front Physiol; 2022; 13():968574. PubMed ID: 36406999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach.
    Greiner P; Houdek P; Sládek M; Sumová A
    PLoS Biol; 2022 May; 20(5):e3001637. PubMed ID: 35609026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability.
    Harvey JRM; Plante AE; Meredith AL
    Physiol Rev; 2020 Oct; 100(4):1415-1454. PubMed ID: 32163720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circuit development in the master clock network of mammals.
    Carmona-Alcocer V; Rohr KE; Joye DAM; Evans JA
    Eur J Neurosci; 2020 Jan; 51(1):82-108. PubMed ID: 30402923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
    Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED
    J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective timekeeping among cells of the master circadian clock.
    Evans JA
    J Endocrinol; 2016 Jul; 230(1):R27-49. PubMed ID: 27154335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms.
    Evans JA; Gorman MR
    Neuroscience; 2016 Apr; 320():259-80. PubMed ID: 26861419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks.
    Bedont JL; Blackshaw S
    Front Syst Neurosci; 2015; 9():74. PubMed ID: 26005407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei.
    Landgraf D; Koch CE; Oster H
    Front Neuroanat; 2014; 8():143. PubMed ID: 25520627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei.
    Houdek P; Sumová A
    PLoS One; 2014; 9(9):e107360. PubMed ID: 25255311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.
    Blumberg MS; Gall AJ; Todd WD
    Behav Neurosci; 2014 Jun; 128(3):250-63. PubMed ID: 24708298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus.
    Takeuchi K; Mohammad S; Ozaki T; Morioka E; Kawaguchi K; Kim J; Jeong B; Hong JH; Lee KJ; Ikeda M
    Sci Rep; 2014 Feb; 4():4106. PubMed ID: 24531181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing artificial environments for preterm infants based on circadian studies on pregnant uterus.
    Watanabe S; Akiyama S; Hanita T; Li H; Nakagawa M; Kaneshi Y; Ohta H;
    Front Endocrinol (Lausanne); 2013 Sep; 4():113. PubMed ID: 24027556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus.
    VanDunk C; Hunter LA; Gray PA
    J Neurosci; 2011 Apr; 31(17):6457-67. PubMed ID: 21525287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of melanopsin-based irradiance detecting circuitry.
    McNeill DS; Sheely CJ; Ecker JL; Badea TC; Morhardt D; Guido W; Hattar S
    Neural Dev; 2011 Mar; 6():8. PubMed ID: 21418557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal feeding controls fetal biological clock.
    Ohta H; Xu S; Moriya T; Iigo M; Watanabe T; Nakahata N; Chisaka H; Hanita T; Matsuda T; Ohura T; Kimura Y; Yaegashi N; Tsuchiya S; Tei H; Okamura K
    PLoS One; 2008 Jul; 3(7):e2601. PubMed ID: 18596966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.