These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30401914)

  • 61. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.
    Vitkin E; Shlomi T
    Genome Biol; 2012 Nov; 13(11):R111. PubMed ID: 23194418
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ITEP: an integrated toolkit for exploration of microbial pan-genomes.
    Benedict MN; Henriksen JR; Metcalf WW; Whitaker RJ; Price ND
    BMC Genomics; 2014 Jan; 15():8. PubMed ID: 24387194
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolome-scale de novo pathway reconstruction using regioisomer-sensitive graph alignments.
    Yamanishi Y; Tabei Y; Kotera M
    Bioinformatics; 2015 Jun; 31(12):i161-70. PubMed ID: 26072478
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flux balance impact degree: a new definition of impact degree to properly treat reversible reactions in metabolic networks.
    Zhao Y; Tamura T; Akutsu T; Vert JP
    Bioinformatics; 2013 Sep; 29(17):2178-85. PubMed ID: 23828783
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pairwise alignment of protein interaction networks.
    Koyutürk M; Kim Y; Topkara U; Subramaniam S; Szpankowski W; Grama A
    J Comput Biol; 2006 Mar; 13(2):182-99. PubMed ID: 16597234
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Network-based scoring system for genome-scale metabolic reconstructions.
    Serrano MÁ; Sagués F
    BMC Syst Biol; 2011 May; 5():76. PubMed ID: 21595941
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.
    Kaleta C; de Figueiredo LF; Schuster S
    Genome Res; 2009 Oct; 19(10):1872-83. PubMed ID: 19541909
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Higher-order molecular organization as a source of biological function.
    Gaudelet T; Malod-Dognin N; Pržulj N
    Bioinformatics; 2018 Sep; 34(17):i944-i953. PubMed ID: 30423061
    [TBL] [Abstract][Full Text] [Related]  

  • 70. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool.
    Gysi DM; Voigt A; Fragoso TM; Almaas E; Nowick K
    BMC Bioinformatics; 2018 Oct; 19(1):392. PubMed ID: 30355288
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolic pathway alignment between species using a comprehensive and flexible similarity measure.
    Li Y; de Ridder D; de Groot MJ; Reinders MJ
    BMC Syst Biol; 2008 Dec; 2():111. PubMed ID: 19108747
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 74. GraphCrunch 2: Software tool for network modeling, alignment and clustering.
    Kuchaiev O; Stevanović A; Hayes W; Pržulj N
    BMC Bioinformatics; 2011 Jan; 12():24. PubMed ID: 21244715
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exploring metabolic pathways in genome-scale networks via generating flux modes.
    Rezola A; de Figueiredo LF; Brock M; Pey J; Podhorski A; Wittmann C; Schuster S; Bockmayr A; Planes FJ
    Bioinformatics; 2011 Feb; 27(4):534-40. PubMed ID: 21149278
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A fast approach to global alignment of protein-protein interaction networks.
    Kollias G; Sathe M; Mohammadi S; Grama A
    BMC Res Notes; 2013 Jan; 6():35. PubMed ID: 23363457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A graph-based approach to analyze flux-balanced pathways in metabolic networks.
    Arabzadeh M; Saheb Zamani M; Sedighi M; Marashi SA
    Biosystems; 2018 Mar; 165():40-51. PubMed ID: 29337084
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction.
    Tabei Y; Yamanishi Y; Kotera M
    Bioinformatics; 2016 Jun; 32(12):i278-i287. PubMed ID: 27307627
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolic network visualization eliminating node redundance and preserving metabolic pathways.
    Bourqui R; Cottret L; Lacroix V; Auber D; Mary P; Sagot MF; Jourdan F
    BMC Syst Biol; 2007 Jul; 1():29. PubMed ID: 17608928
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Extracting the abstraction pyramid from complex networks.
    Cheng CY; Hu YJ
    BMC Bioinformatics; 2010 Aug; 11():411. PubMed ID: 20682075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.