These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms. Carbonell P; Fichera D; Pandit SB; Faulon JL BMC Syst Biol; 2012 Feb; 6():10. PubMed ID: 22309974 [TBL] [Abstract][Full Text] [Related]
84. Consistent alignment of metabolic pathways without abstraction. Ay F; Kahveci T; de Crécy-Lagard V Comput Syst Bioinformatics Conf; 2008; 7():237-48. PubMed ID: 19642284 [TBL] [Abstract][Full Text] [Related]
85. Pairwise Versus Multiple Global Network Alignment. Vijayan V; Gu S; Krebs ET; Meng L; MilenkoviĆ T IEEE Access; 2020; 8():41961-41974. PubMed ID: 33747670 [TBL] [Abstract][Full Text] [Related]
86. A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks. Cinaglia P; Cannataro M Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190452 [TBL] [Abstract][Full Text] [Related]
87. Chemical and genomic evolution of enzyme-catalyzed reaction networks. Kanehisa M FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707 [TBL] [Abstract][Full Text] [Related]
88. Topological network alignment uncovers biological function and phylogeny. Kuchaiev O; Milenkovic T; Memisevic V; Hayes W; Przulj N J R Soc Interface; 2010 Sep; 7(50):1341-54. PubMed ID: 20236959 [TBL] [Abstract][Full Text] [Related]
89. Pairwise Biological Network Alignment Based on Discrete Bat Algorithm. Chen J; Zhang Y; Xia JF Comput Math Methods Med; 2021; 2021():5548993. PubMed ID: 34777564 [TBL] [Abstract][Full Text] [Related]
90. Construction of an E. Coli genome-scale atom mapping model for MFA calculations. Ravikirthi P; Suthers PF; Maranas CD Biotechnol Bioeng; 2011 Jun; 108(6):1372-82. PubMed ID: 21328316 [TBL] [Abstract][Full Text] [Related]
91. CUFID-query: accurate network querying through random walk based network flow estimation. Jeong H; Qian X; Yoon BJ BMC Bioinformatics; 2017 Dec; 18(Suppl 14):500. PubMed ID: 29297279 [TBL] [Abstract][Full Text] [Related]
92. Superessential reactions in metabolic networks. Barve A; Rodrigues JF; Wagner A Proc Natl Acad Sci U S A; 2012 May; 109(18):E1121-30. PubMed ID: 22509034 [TBL] [Abstract][Full Text] [Related]
93. Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks. Klamt S; Mahadevan R; von Kamp A BMC Bioinformatics; 2020 Nov; 21(1):510. PubMed ID: 33167871 [TBL] [Abstract][Full Text] [Related]
94. Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis. Verkhedkar KD; Raman K; Chandra NR; Vishveshwara S PLoS One; 2007 Sep; 2(9):e881. PubMed ID: 17849010 [TBL] [Abstract][Full Text] [Related]
95. INDEX: Incremental depth extension approach for protein-protein interaction networks alignment. Mir A; Naghibzadeh M; Saadati N Biosystems; 2017 Dec; 162():24-34. PubMed ID: 28860070 [TBL] [Abstract][Full Text] [Related]
96. The topology of genome-scale metabolic reconstructions unravels independent modules and high network flexibility. Martínez VS; Saa PA; Jooste J; Tiwari K; Quek LE; Nielsen LK PLoS Comput Biol; 2022 Jun; 18(6):e1010203. PubMed ID: 35759507 [TBL] [Abstract][Full Text] [Related]
97. The topology of the bacterial co-conserved protein network and its implications for predicting protein function. Karimpour-Fard A; Leach SM; Hunter LE; Gill RT BMC Genomics; 2008 Jun; 9():313. PubMed ID: 18590549 [TBL] [Abstract][Full Text] [Related]
98. The protein-protein interaction network alignment using recurrent neural network. Mahdipour E; Ghasemzadeh M Med Biol Eng Comput; 2021 Nov; 59(11-12):2263-2286. PubMed ID: 34529185 [TBL] [Abstract][Full Text] [Related]
99. Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks. Hari A; Lobo D Nucleic Acids Res; 2020 Jul; 48(W1):W427-W435. PubMed ID: 32442279 [TBL] [Abstract][Full Text] [Related]