These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30402342)

  • 1. Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST.
    Turpin A; Morgan WH; McKendrick AM
    Transl Vis Sci Technol; 2018 Sep; 7(5):35. PubMed ID: 30402342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the Spatial Resolution of Visual Field Tests Without Increasing Test Duration: An Evaluation of ARREST.
    Muthusamy V; Turpin A; Walland MJ; Nguyen BN; McKendrick AM
    Transl Vis Sci Technol; 2020 Dec; 9(13):24. PubMed ID: 33364079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating Spatial Models in Visual Field Test Procedures.
    Rubinstein NJ; McKendrick AM; Turpin A
    Transl Vis Sci Technol; 2016 Mar; 5(2):7. PubMed ID: 26981329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a variability-adjusted algorithm on the efficiency of perimetric testing.
    Gardiner SK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2983-92. PubMed ID: 24713484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Patient-Tailored Perimetry: Automated Perimetry Can Be Improved by Seeding Procedures With Patient-Specific Structural Information.
    Denniss J; McKendrick AM; Turpin A
    Transl Vis Sci Technol; 2013 May; 2(4):3. PubMed ID: 24049720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Nov; 82(11):981-7. PubMed ID: 16317375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new static visual field test algorithm: the Ambient Interactive ZEST (AIZE).
    Nomoto H; Matsumoto C; Okuyama S; Kimura S; Inoue S; Yamanaka K; Kusaka S
    Sci Rep; 2023 Sep; 13(1):14945. PubMed ID: 37696993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal processing of threshold data for detection of progressive glaucomatous visual field loss.
    Spry PG; Johnson CA; Bates AB; Turpin A; Chauhan BC
    Arch Ophthalmol; 2002 Feb; 120(2):173-80. PubMed ID: 11831919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customized, automated stimulus location choice for assessment of visual field defects.
    Chong LX; McKendrick AM; Ganeshrao SB; Turpin A
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3265-74. PubMed ID: 24781947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):709-15. PubMed ID: 11867588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning.
    Montesano G; Lazaridis G; Ometto G; Crabb DP; Garway-Heath DF
    Transl Vis Sci Technol; 2023 Oct; 12(10):10. PubMed ID: 37831447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2862-9. PubMed ID: 24595388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma.
    Turpin A; Jankovic D; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1627-34. PubMed ID: 17389493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.
    Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trail-Traced Threshold Test (T4) With a Weighted Binomial Distribution for a Psychophysical Test.
    Gong Y; Zhu H; Miranda M; Crabb DP; Yang H; Bi W; Garway-Heath DF
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2787-2800. PubMed ID: 33544681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.
    Gardiner SK; Swanson WH; Goren D; Mansberger SL; Demirel S
    Ophthalmology; 2014 Jul; 121(7):1359-69. PubMed ID: 24629617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted spatial sampling using GOANNA improves detection of visual field progression.
    Chong LX; Turpin A; McKendrick AM
    Ophthalmic Physiol Opt; 2015 Mar; 35(2):155-69. PubMed ID: 25683867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long- and Short-Term Variability of Perimetry in Glaucoma.
    Gardiner SK; Swanson WH; Mansberger SL
    Transl Vis Sci Technol; 2022 Aug; 11(8):3. PubMed ID: 35917137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual field progression in glaucoma: total versus pattern deviation analyses.
    Artes PH; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4600-6. PubMed ID: 16303955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli.
    Wall M; Kutzko KE; Chauhan BC
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):426-35. PubMed ID: 9040476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.