These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30402696)

  • 1. Analysis of swale factors implicated in pollutant removal efficiency using a swale database.
    Fardel A; Peyneau PE; Béchet B; Lakel A; Rodriguez F
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1287-1302. PubMed ID: 30402696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of grass swales for improving water quality from highway runoff.
    Stagge JH; Davis AP; Jamil E; Kim H
    Water Res; 2012 Dec; 46(20):6731-42. PubMed ID: 22463860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grassed swales for stormwater pollution control during rain and snowmelt.
    Bäckström M
    Water Sci Technol; 2003; 48(9):123-32. PubMed ID: 14703146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the pollutant-removal performance and DOM characteristics of stormwater runoff during grassy-swales treatment.
    Yuan DH; He JW; Li CW; Guo XJ; Xiong Y; Yan CL
    Environ Technol; 2019 Jan; 40(4):441-450. PubMed ID: 29050533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation swale design for stormwater runoff treatment: A comprehensive approach.
    Ekka SA; Rujner H; Leonhardt G; Blecken GT; Viklander M; Hunt WF
    J Environ Manage; 2021 Feb; 279():111756. PubMed ID: 33360437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of two contrasting pilot swale designs for treating zinc, polycyclic aromatic hydrocarbons and glyphosate from stormwater runoff.
    Fardel A; Peyneau PE; Béchet B; Lakel A; Rodriguez F
    Sci Total Environ; 2020 Nov; 743():140503. PubMed ID: 32679489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area.
    Leroy MC; Portet-Koltalo F; Legras M; Lederf F; Moncond'huy V; Polaert I; Marcotte S
    Sci Total Environ; 2016 Oct; 566-567():113-121. PubMed ID: 27220090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics.
    Murphy LU; Cochrane TA; O'Sullivan A
    Sci Total Environ; 2015 Mar; 508():206-13. PubMed ID: 25478658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].
    Huang JJ; Shen QR; Li T
    Huan Jing Ke Xue; 2015 Jun; 36(6):2109-15. PubMed ID: 26387314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.
    Zhao J; Zhao Y; Zhao X; Jiang C
    Environ Sci Pollut Res Int; 2016 May; 23(9):9093-104. PubMed ID: 26832867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field performance of two biofiltration systems treating micropollutants from road runoff.
    Flanagan K; Branchu P; Boudahmane L; Caupos E; Demare D; Deshayes S; Dubois P; Meffray L; Partibane C; Saad M; Gromaire MC
    Water Res; 2018 Nov; 145():562-578. PubMed ID: 30199801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance and modeling of a vertical flow constructed wetland-maturation pond system.
    Gikas GD; Tsihrintzis VA; Akratos CS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):692-708. PubMed ID: 21644145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing bioretention designs with and without an internal water storage layer for treating highway runoff.
    Li MH; Swapp M; Kim MH; Chu KH; Sung CY
    Water Environ Res; 2014 May; 86(5):387-97. PubMed ID: 24961065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a 'Transitioned' Infiltration Basin Part 2: Nitrogen and Phosphorus Removals.
    Natarajan P; Davis AP
    Water Environ Res; 2016 Apr; 88(4):291-302. PubMed ID: 26182426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local infiltration devices at parking sites--experimental assessment of temporal changes in hydraulic and contaminant removal capacity.
    Achleitner S; Engelhard C; Stegner U; Rauch W
    Water Sci Technol; 2007; 55(4):193-200. PubMed ID: 17425086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient, Metal, and Organics Removal from Stormwater Using a Range of Bioretention Soil Mixtures.
    Jay JG; Tyler-Plog M; Brown SL; Grothkopp F
    J Environ Qual; 2019 Mar; 48(2):493-501. PubMed ID: 30951121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the removal efficiency of heavy metals and nutrients from ecological drainage ditches treating town sewage during dry and wet seasons.
    Kumwimba MN; Zhu B; Muyembe DK
    Environ Monit Assess; 2017 Sep; 189(9):434. PubMed ID: 28779427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
    Istenič D; Arias CA; Vollertsen J; Nielsen AH; Wium-Andersen T; Hvitved-Jacobsen T; Brix H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1466-77. PubMed ID: 22571535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollutant removal performance of field-scale stormwater biofiltration systems.
    Hatt BE; Fletcher TD; Deletic A
    Water Sci Technol; 2009; 59(8):1567-76. PubMed ID: 19403970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.
    Lucke T; Nichols PWB
    Sci Total Environ; 2015 Dec; 536():784-792. PubMed ID: 26254078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.