These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 30402703)

  • 1. Forensic age estimation for pelvic X-ray images using deep learning.
    Li Y; Huang Z; Dong X; Liang W; Xue H; Zhang L; Zhang Y; Deng Z
    Eur Radiol; 2019 May; 29(5):2322-2329. PubMed ID: 30402703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of Three CNN Models Applied in Bone Age Assessment of Pelvic Radiographs of Adolescents].
    Peng LQ; Wan L; Wang MW; Li Z; Wang P; Liu TA; Wang YH; Zhao H
    Fa Yi Xue Za Zhi; 2020 Oct; 36(5):622-630. PubMed ID: 33295161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based automated bone age estimation for Saudi patients on hand radiograph images: a retrospective study.
    Hamd ZY; Alorainy AI; Alharbi MA; Hamdoun A; Alkhedeiri A; Alhegail S; Absar N; Khandaker MU; Osman AFI
    BMC Med Imaging; 2024 Aug; 24(1):199. PubMed ID: 39090563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction.
    Zhang HH; Cao YJ; Zhang J; Xiong J; Ma JW; Yang XT; Huang P; Ma YG
    Fa Yi Xue Za Zhi; 2024 Apr; 40(2):154-163. PubMed ID: 38847030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.
    Larson DB; Chen MC; Lungren MP; Halabi SS; Stence NV; Langlotz CP
    Radiology; 2018 Apr; 287(1):313-322. PubMed ID: 29095675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels.
    Kim PH; Yoon HM; Kim JR; Hwang JY; Choi JH; Hwang J; Lee J; Sung J; Jung KH; Bae B; Jung AY; Cho YA; Shim WH; Bak B; Lee JS
    Korean J Radiol; 2023 Nov; 24(11):1151-1163. PubMed ID: 37899524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Age Estimation and Prediction of Final Adult Height Using Deep Learning.
    Suh J; Heo J; Kim SJ; Park S; Jung MK; Choi HS; Choi Y; Oh JS; Lee HI; Lee M; Song K; Kwon A; Chae HW; Kim HS
    Yonsei Med J; 2023 Nov; 64(11):679-686. PubMed ID: 37880849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network.
    Peng LQ; Guo YC; Wan L; Liu TA; Wang P; Zhao H; Wang YH
    Int J Legal Med; 2022 May; 136(3):797-810. PubMed ID: 35039894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of automatic measurements of hip joints based on pelvic radiography and a deep learning algorithm.
    Yang W; Ye Q; Ming S; Hu X; Jiang Z; Shen Q; He L; Gong X
    Eur J Radiol; 2020 Nov; 132():109303. PubMed ID: 33017773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning.
    Wesp P; Schachtner BM; Jeblick K; Topalis J; Weber M; Fischer F; Penning R; Ricke J; Ingrisch M; Sabel BO
    Int J Legal Med; 2024 Jul; 138(4):1497-1507. PubMed ID: 38286953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs.
    Fan F; Dong X; Wu X; Li R; Dai X; Zhang K; Huang F; Deng Z
    Forensic Sci Int; 2020 Sep; 314():110350. PubMed ID: 32650207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression Algorithm of Bone Age Estimation of Knee-joint Based on Principal Component Analysis and Support Vector Machine.
    Lei YY; Shen YS; Wang YH; Zhao H
    Fa Yi Xue Za Zhi; 2019 Apr; 35(2):194-199. PubMed ID: 31135114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Assessment of Bone Age Using Deep Learning and Gaussian Process Regression.
    Van Steenkiste T; Ruyssinck J; Janssens O; Vandersmissen B; Vandecasteele F; Devolder P; Achten E; Van Hoecke S; Deschrijver D; Dhaene T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():674-677. PubMed ID: 30440486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability.
    Tajmir SH; Lee H; Shailam R; Gale HI; Nguyen JC; Westra SJ; Lim R; Yune S; Gee MS; Do S
    Skeletal Radiol; 2019 Feb; 48(2):275-283. PubMed ID: 30069585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and deep learning enabled age estimation on medial clavicle CT images.
    Qiu L; Liu A; Dai X; Liu G; Peng Z; Zhan M; Liu J; Gui Y; Zhu H; Chen H; Deng Z; Fan F
    Int J Legal Med; 2024 Mar; 138(2):487-498. PubMed ID: 37940721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated age estimation of young individuals based on 3D knee MRI using deep learning.
    Mauer MA; Well EJ; Herrmann J; Groth M; Morlock MM; Maas R; Säring D
    Int J Legal Med; 2021 Mar; 135(2):649-663. PubMed ID: 33331995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Bone Age Based on Hand Radiographs Using Regression-Based Multi-Modal Deep Learning.
    Kim JK; Park D; Chang MC
    Life (Basel); 2024 Jun; 14(6):. PubMed ID: 38929756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forensic bone age assessment of hand and wrist joint MRI images in Chinese han male adolescents based on deep convolutional neural networks.
    Zhou HM; Zhou ZL; He YH; Liu TA; Wan L; Wang YH
    Int J Legal Med; 2024 Nov; 138(6):2427-2440. PubMed ID: 39060444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.