BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30403147)

  • 1. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology.
    Alruwaili N; Kandhi S; Sun D; Wolin MS
    Antioxid Redox Signal; 2019 Oct; 31(10):752-769. PubMed ID: 30403147
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.
    Wolin MS; Gupte SA; Neo BH; Gao Q; Ahmad M
    Cardiol Rev; 2010; 18(2):89-93. PubMed ID: 20160535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH.
    Wolin MS; Ahmad M; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L159-73. PubMed ID: 16002998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology.
    Patel D; Lakhkar A; Wolin MS
    Adv Exp Med Biol; 2017; 967():227-240. PubMed ID: 29047089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing.
    Wolin MS; Ahmad M; Gao Q; Gupte SA
    Antioxid Redox Signal; 2007 Jun; 9(6):671-8. PubMed ID: 17511583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming.
    D'Alessandro A; El Kasmi KC; Plecitá-Hlavatá L; Ježek P; Li M; Zhang H; Gupte SA; Stenmark KR
    Antioxid Redox Signal; 2018 Jan; 28(3):230-250. PubMed ID: 28637353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension.
    Hashimoto R; Gupte S
    Adv Exp Med Biol; 2017; 967():47-55. PubMed ID: 29047080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and the control of vascular function.
    Wolin MS
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H539-49. PubMed ID: 19151250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of responses to hypoxia and NO-cGMP signaling in pulmonary vascular pathophysiology.
    Wolin MS; Gupte SA; Mingone CJ; Neo BH; Gao Q; Ahmad M
    Ann N Y Acad Sci; 2010 Aug; 1203():126-32. PubMed ID: 20716294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle.
    Gao Q; Wolin MS
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H978-H989. PubMed ID: 18567707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms.
    Wolin MS; Burke-Wolin TM; Mohazzab-H KM
    Respir Physiol; 1999 Apr; 115(2):229-38. PubMed ID: 10385036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.
    Griendling KK; Sorescu D; Lassègue B; Ushio-Fukai M
    Arterioscler Thromb Vasc Biol; 2000 Oct; 20(10):2175-83. PubMed ID: 11031201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of NO-elicited pulmonary artery relaxation and guanylate cyclase activation by NADH oxidase and SOD.
    Gupte SA; Rupawalla T; Mohazzab-H KM; Wolin MS
    Am J Physiol; 1999 May; 276(5):H1535-42. PubMed ID: 10330236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension.
    Jaitovich A; Jourd'heuil D
    Adv Exp Med Biol; 2017; 967():71-81. PubMed ID: 29047082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.
    Archer SL; Gomberg-Maitland M; Maitland ML; Rich S; Garcia JG; Weir EK
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H570-8. PubMed ID: 18083891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension.
    Plecitá-Hlavatá L; D'alessandro A; El Kasmi K; Li M; Zhang H; Ježek P; Stenmark KR
    Adv Exp Med Biol; 2017; 967():241-260. PubMed ID: 29047090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension.
    Plecitá-Hlavatá L; Tauber J; Li M; Zhang H; Flockton AR; Pullamsetti SS; Chelladurai P; D'Alessandro A; El Kasmi KC; Ježek P; Stenmark KR
    Am J Respir Cell Mol Biol; 2016 Jul; 55(1):47-57. PubMed ID: 26699943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential utilization of NADPH as the endogenous electron donor for NAD(P)H:quinone oxidoreductase 1 (NQO1) in intact pulmonary arterial endothelial cells.
    Bongard RD; Lindemer BJ; Krenz GS; Merker MP
    Free Radic Biol Med; 2009 Jan; 46(1):25-32. PubMed ID: 18848878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension.
    Jernigan NL; Resta TC; Gonzalez Bosc LV
    Adv Exp Med Biol; 2017; 967():83-103. PubMed ID: 29047083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.