BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30403161)

  • 1. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis.
    Reitsema VA; Star BS; de Jager VD; van Meurs M; Henning RH; Bouma HR
    Antioxid Redox Signal; 2019 Jul; 31(2):134-152. PubMed ID: 30403161
    [No Abstract]   [Full Text] [Related]  

  • 2. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome.
    Dare AJ; Phillips AR; Hickey AJ; Mittal A; Loveday B; Thompson N; Windsor JA
    Free Radic Biol Med; 2009 Dec; 47(11):1517-25. PubMed ID: 19715753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide improves resuscitation via non-hibernatory mechanisms in a porcine shock model.
    Satterly SA; Salgar S; Hoffer Z; Hempel J; DeHart MJ; Wingerd M; Raywin H; Stallings JD; Martin M
    J Surg Res; 2015 Nov; 199(1):197-210. PubMed ID: 25956183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mitochondrial and microcirculatory distress syndrome in the critical patient. Therapeutic implications].
    Navarrete ML; Cerdeño MC; Serra MC; Conejero R
    Med Intensiva; 2013 Oct; 37(7):476-84. PubMed ID: 24018281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species.
    Dugbartey GJ; Hardenberg MC; Kok WF; Boerema AS; Carey HV; Staples JF; Henning RH; Bouma HR
    Antioxid Redox Signal; 2017 Sep; 27(9):599-617. PubMed ID: 28322600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria.
    Lin Y; Xu Y; Zhang Z
    Inflammation; 2020 Aug; 43(4):1184-1200. PubMed ID: 32333359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hibernation-Like State for Transplantable Organs: Is Hydrogen Sulfide Therapy the Future of Organ Preservation?
    Dugbartey GJ; Bouma HR; Saha MN; Lobb I; Henning RH; Sener A
    Antioxid Redox Signal; 2018 Jun; 28(16):1503-1515. PubMed ID: 28747071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure.
    Protti A; Singer M
    Crit Care; 2006; 10(5):228. PubMed ID: 16953900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review).
    Jarrar D; Chaudry IH; Wang P
    Int J Mol Med; 1999 Dec; 4(6):575-83. PubMed ID: 10567665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and mitochondrial dysfunction in sepsis.
    Galley HF
    Br J Anaesth; 2011 Jul; 107(1):57-64. PubMed ID: 21596843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepsis, mitochondrial failure and multiple organ dysfunction.
    Duran-Bedolla J; Montes de Oca-Sandoval MA; Saldaña-Navor V; Villalobos-Silva JA; Rodriguez MC; Rivas-Arancibia S
    Clin Invest Med; 2014 Apr; 37(2):E58-69. PubMed ID: 24690420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis.
    Lancel S; Hassoun SM; Favory R; Decoster B; Motterlini R; Neviere R
    J Pharmacol Exp Ther; 2009 May; 329(2):641-8. PubMed ID: 19190234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide.
    Baumgart K; Radermacher P; Wagner F
    Curr Opin Anaesthesiol; 2009 Apr; 22(2):168-76. PubMed ID: 19390245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury.
    Quoilin C; Mouithys-Mickalad A; Lécart S; Fontaine-Aupart MP; Hoebeke M
    Biochim Biophys Acta; 2014 Oct; 1837(10):1790-800. PubMed ID: 25019585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis.
    Levy RJ
    Shock; 2007 Jul; 28(1):24-8. PubMed ID: 17483747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sepsis in Emergency Medicine].
    Christ M; Geier F; Bertsch T; Singler K
    Dtsch Med Wochenschr; 2016 Jul; 141(15):1074-81. PubMed ID: 27464279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy.
    McClave SA; Wischmeyer PE; Miller KR; van Zanten ARH
    Curr Nutr Rep; 2019 Dec; 8(4):363-373. PubMed ID: 31713718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects.
    Módis K; Bos EM; Calzia E; van Goor H; Coletta C; Papapetropoulos A; Hellmich MR; Radermacher P; Bouillaud F; Szabo C
    Br J Pharmacol; 2014 Apr; 171(8):2123-46. PubMed ID: 23991749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function and substrate availability.
    Leverve XM
    Crit Care Med; 2007 Sep; 35(9 Suppl):S454-60. PubMed ID: 17713393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.