These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30403314)

  • 61. Value of protected areas to avian persistence across 20 years of climate and land-use change.
    Peach MA; Cohen JB; Frair JL; Zuckerberg B; Sullivan P; Porter WF; Lang C
    Conserv Biol; 2019 Apr; 33(2):423-433. PubMed ID: 30113109
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Population dynamics and methodological assessments from a 15-year period of Amphibian monitoring in British Columbia's Southern Gulf Islands.
    Nelson KR; Davies MM; Thomson HM; Lawn PTES; Kushneryk K; Brouard-John EK; Paleczny M; Helms S; Hawkes VC; Gerwing TG
    Environ Monit Assess; 2021 Mar; 193(4):216. PubMed ID: 33759034
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge.
    Davenport JM; Hossack BR; Fishback L
    Glob Chang Biol; 2017 Jun; 23(6):2262-2271. PubMed ID: 27790788
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regional decline of an iconic amphibian associated with elevation, land-use change, and invasive species.
    Johnson PT; McKenzie VJ; Peterson AC; Kerby JL; Brown J; Blaustein AR; Jackson T
    Conserv Biol; 2011 Jun; 25(3):556-66. PubMed ID: 21342266
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Limited shifts in the distribution of migratory bird breeding habitat density in response to future changes in climate.
    McKenna OP; Mushet DM; Kucia SR; McCulloch-Huseby EC
    Ecol Appl; 2021 Oct; 31(7):e02428. PubMed ID: 34318972
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.
    Börger L; Nudds TD
    Ecol Appl; 2014 Jan; 24(1):121-41. PubMed ID: 24640539
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ecological risk assessment of wetland vegetation under projected climate scenarios in the Sanjiang Plain, China.
    Fu J; Liu J; Wang X; Zhang M; Chen W; Chen B
    J Environ Manage; 2020 Nov; 273():111108. PubMed ID: 32741759
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.
    O'Regan SM; Palen WJ; Anderson SC
    Ecology; 2014 Apr; 95(4):845-55. PubMed ID: 24933805
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using the Phenology of Pond-Breeding Amphibians to Develop Conservation Strategies.
    Paton PWC; Crouch WB
    Conserv Biol; 2002 Feb; 16(1):194-204. PubMed ID: 35701957
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Prioritizing Wetlands for Waterbirds in a Boom and Bust System: Waterbird Refugia and Breeding in the Murray-Darling Basin.
    Bino G; Kingsford RT; Porter J
    PLoS One; 2015; 10(7):e0132682. PubMed ID: 26161652
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cattle grazing and conservation of a meadow-dependent amphibian species in the Sierra Nevada.
    Roche LM; Latimer AM; Eastburn DJ; Tate KW
    PLoS One; 2012; 7(4):e35734. PubMed ID: 22558211
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Drought-mediated extinction of an arid-land amphibian: insights from a spatially explicit dynamic occupancy model.
    Zylstra ER; Swann DE; Hossack BR; Muths E; Steidl RJ
    Ecol Appl; 2019 Apr; 29(3):e01859. PubMed ID: 30680832
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region.
    Zhang L; Zhen Q; Cheng M; Ouyang Z
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31340479
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Amphibian occurrence is influenced by current and historic landscape characteristics.
    Piha H; Luoto M; Merilä J
    Ecol Appl; 2007 Dec; 17(8):2298-309. PubMed ID: 18213970
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Drivers of assemblage-wide calling activity in tropical anurans and the role of temporal resolution.
    Sugai LSM; Silva TSF; Llusia D; Siqueira T
    J Anim Ecol; 2021 Mar; 90(3):673-684. PubMed ID: 33289069
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Composition, diversity, and spatial relationships of anurans following wetland restoration in a managed tropical forest.
    Lee YF; Kuo YM; Lin YH; Chu WC; Wang HH; Wu SH
    Zoolog Sci; 2006 Oct; 23(10):883-91. PubMed ID: 17116991
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Disentangling direct and indirect effects of extreme events on coastal wetland communities.
    Davis CL; Walls SC; Barichivich WJ; Brown ME; Miller DAW
    J Anim Ecol; 2023 Jun; 92(6):1135-1148. PubMed ID: 36527172
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands.
    Uden DR; Hellman ML; Angeler DG; Allen CR
    Ecol Appl; 2014; 24(7):1569-82. PubMed ID: 29210223
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Managing farm ponds as breeding sites for amphibians: key trade-offs in agricultural function and habitat conservation.
    Swartz TM; Miller JR
    Ecol Appl; 2019 Oct; 29(7):e01964. PubMed ID: 31243830
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fish utilisation of wetland nurseries with complex hydrological connectivity.
    Davis B; Johnston R; Baker R; Sheaves M
    PLoS One; 2012; 7(11):e49107. PubMed ID: 23152857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.