These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30403342)

  • 21. The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor.
    Gwenin CD; Kalaji M; Williams PA; Jones RM
    Biosens Bioelectron; 2007 Jun; 22(12):2869-75. PubMed ID: 17244521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study.
    Ahmad R; Sardar M
    Indian J Biochem Biophys; 2014 Aug; 51(4):314-20. PubMed ID: 25296503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active Acetylcholinesterase Immobilization on a Functionalized Silicon Surface.
    Khaldi K; Sam S; Gouget-Laemmel AC; Henry de Villeneuve C; Moraillon A; Ozanam F; Yang J; Kermad A; Ghellai N; Gabouze N
    Langmuir; 2015 Aug; 31(30):8421-8. PubMed ID: 26153025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.
    Ibrahim AS; Al-Salamah AA; El-Toni AM; Almaary KS; El-Tayeb MA; Elbadawi YB; Antranikian G
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26840303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.
    Hoarau M; Badieyan S; Marsh ENG
    Org Biomol Chem; 2017 Nov; 15(45):9539-9551. PubMed ID: 28932860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use.
    Diyanat S; Homaei A; Mosaddegh E
    Int J Biol Macromol; 2018 Oct; 118(Pt A):92-98. PubMed ID: 29913192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes from Human Pathogens.
    Mullowney MW; Maltseva NI; Endres M; Kim Y; Joachimiak A; Crofts TS
    Microbiol Spectr; 2022 Apr; 10(2):e0013922. PubMed ID: 35195438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein and electrode engineering for the covalent immobilization of P450 BMP on gold.
    Ferrero VE; Andolfi L; Di Nardo G; Sadeghi SJ; Fantuzzi A; Cannistraro S; Gilardi G
    Anal Chem; 2008 Nov; 80(22):8438-46. PubMed ID: 18947200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers.
    Chaparro Sosa AF; Kienle DF; Falatach RM; Flanagan J; Kaar JL; Schwartz DK
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19504-19513. PubMed ID: 29767959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase.
    Konwarh R; Karak N; Rai SK; Mukherjee AK
    Nanotechnology; 2009 Jun; 20(22):225107. PubMed ID: 19433867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemically modified Sepharose as support for the immobilization of cholesterol oxidase.
    Yang H; Chen Y; Xin Y; Zhang L; Zhang Y; Wang W
    J Microbiol Biotechnol; 2013 Sep; 23(9):1212-20. PubMed ID: 23711516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase.
    Lane SM; Kuang Z; Yom J; Arifuzzaman S; Genzer J; Farmer B; Naik R; Vaia RA
    Biomacromolecules; 2011 May; 12(5):1822-30. PubMed ID: 21438540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altering the regioselectivity of a nitroreductase in the synthesis of arylhydroxylamines by structure-based engineering.
    Bai J; Zhou Y; Chen Q; Yang Q; Yang J
    Chembiochem; 2015 May; 16(8):1219-25. PubMed ID: 25917861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.
    Tang W; Chen C; Sun W; Wang P; Wei D
    Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies.
    Tavares AP; Silva CG; Dražić G; Silva AM; Loureiro JM; Faria JL
    J Colloid Interface Sci; 2015 Sep; 454():52-60. PubMed ID: 26002339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme distribution and secondary structure of sol-gel immobilized glucose oxidase by micro-attenuated total reflection FT-IR spectroscopy.
    Delfino I; Portaccio M; Della Ventura B; Mita DG; Lepore M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):304-10. PubMed ID: 25428076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced enzyme stability through site-directed covalent immobilization.
    Wu JC; Hutchings CH; Lindsay MJ; Werner CJ; Bundy BC
    J Biotechnol; 2015 Jan; 193():83-90. PubMed ID: 25449015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance.
    Hernandez K; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 Feb; 48(2):107-22. PubMed ID: 22112819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different interfacial behaviors of N- and C-terminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface.
    Han X; Uzarski JR; Mello CM; Chen Z
    Langmuir; 2013 Sep; 29(37):11705-12. PubMed ID: 23919837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.