These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30403372)

  • 1. Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core.
    Borst AJ; Weidle CE; Gray MD; Frenz B; Snijder J; Joyce MG; Georgiev IS; Stewart-Jones GB; Kwong PD; McGuire AT; DiMaio F; Stamatatos L; Pancera M; Veesler D
    Elife; 2018 Nov; 7():. PubMed ID: 30403372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies.
    LaBranche CC; McGuire AT; Gray MD; Behrens S; Kwong PDK; Chen X; Zhou T; Sattentau QJ; Peacock J; Eaton A; Greene K; Gao H; Tang H; Perez LG; Chen X; Saunders KO; Kwong PD; Mascola JR; Haynes BF; Stamatatos L; Montefiori DC
    PLoS Pathog; 2018 Nov; 14(11):e1007431. PubMed ID: 30395637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for germline antibody recognition of HIV-1 immunogens.
    Scharf L; West AP; Sievers SA; Chen C; Jiang S; Gao H; Gray MD; McGuire AT; Scheid JF; Nussenzweig MC; Stamatatos L; Bjorkman PJ
    Elife; 2016 Mar; 5():. PubMed ID: 26997349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity.
    Rathore U; Saha P; Kesavardhana S; Kumar AA; Datta R; Devanarayanan S; Das R; Mascola JR; Varadarajan R
    J Biol Chem; 2017 Jun; 292(24):10197-10219. PubMed ID: 28446609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site.
    Gristick HB; von Boehmer L; West AP; Schamber M; Gazumyan A; Golijanin J; Seaman MS; Fätkenheuer G; Klein F; Nussenzweig MC; Bjorkman PJ
    Nat Struct Mol Biol; 2016 Oct; 23(10):906-915. PubMed ID: 27617431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies.
    Ingale J; Tran K; Kong L; Dey B; McKee K; Schief W; Kwong PD; Mascola JR; Wyatt RT
    J Virol; 2014 Dec; 88(24):14002-16. PubMed ID: 25253346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits.
    Yasmeen A; Ringe R; Derking R; Cupo A; Julien JP; Burton DR; Ward AB; Wilson IA; Sanders RW; Moore JP; Klasse PJ
    Retrovirology; 2014 May; 11():41. PubMed ID: 24884783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemically defined HIV-1 envelope glycoprotein variant immunogens display differential binding and neutralizing specificities to the CD4-binding site.
    Feng Y; McKee K; Tran K; O'Dell S; Schmidt SD; Phogat A; Forsell MN; Karlsson Hedestam GB; Mascola JR; Wyatt RT
    J Biol Chem; 2012 Feb; 287(8):5673-86. PubMed ID: 22167180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation.
    Tran EE; Borgnia MJ; Kuybeda O; Schauder DM; Bartesaghi A; Frank GA; Sapiro G; Milne JL; Subramaniam S
    PLoS Pathog; 2012; 8(7):e1002797. PubMed ID: 22807678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan.
    Liang Y; Guttman M; Williams JA; Verkerke H; Alvarado D; Hu SL; Lee KK
    J Virol; 2016 Oct; 90(20):9224-36. PubMed ID: 27489265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies.
    Duan H; Chen X; Boyington JC; Cheng C; Zhang Y; Jafari AJ; Stephens T; Tsybovsky Y; Kalyuzhniy O; Zhao P; Menis S; Nason MC; Normandin E; Mukhamedova M; DeKosky BJ; Wells L; Schief WR; Tian M; Alt FW; Kwong PD; Mascola JR
    Immunity; 2018 Aug; 49(2):301-311.e5. PubMed ID: 30076101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.
    Behrens AJ; Kumar A; Medina-Ramirez M; Cupo A; Marshall K; Cruz Portillo VM; Harvey DJ; Ozorowski G; Zitzmann N; Wilson IA; Ward AB; Struwe WB; Moore JP; Sanders RW; Crispin M
    J Proteome Res; 2018 Mar; 17(3):987-999. PubMed ID: 29420040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short CDRL1 in intermediate VRC01-like mAbs is not sufficient to overcome key glycan barriers on HIV-1 Env.
    Agrawal P; Knudsen ML; MacCamy A; Hurlburt NK; Khechaduri A; Salladay KR; Kher GM; Kallur Siddaramaiah L; Stuart AB; Bontjer I; Shen X; Montefiori D; Gristick HB; Bjorkman PJ; Sanders RW; Pancera M; Stamatatos L
    J Virol; 2024 Oct; 98(10):e0074424. PubMed ID: 39240111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1) membrane envelope glycoprotein trimer.
    Alsahafi N; Debbeche O; Sodroski J; Finzi A
    PLoS One; 2015; 10(4):e0122111. PubMed ID: 25849367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier.
    Bonsignori M; Scott E; Wiehe K; Easterhoff D; Alam SM; Hwang KK; Cooper M; Xia SM; Zhang R; Montefiori DC; Henderson R; Nie X; Kelsoe G; Moody MA; Chen X; Joyce MG; Kwong PD; Connors M; Mascola JR; McGuire AT; Stamatatos L; Medina-Ramírez M; Sanders RW; Saunders KO; Kepler TB; Haynes BF
    Immunity; 2018 Dec; 49(6):1162-1174.e8. PubMed ID: 30552024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a broadly cross-reactive HIV-1 human monoclonal antibody that binds to both gp120 and gp41.
    Zhang MY; Yuan T; Li J; Rosa Borges A; Watkins JD; Guenaga J; Yang Z; Wang Y; Wilson R; Li Y; Polonis VR; Pincus SH; Ruprecht RM; Dimitrov DS
    PLoS One; 2012; 7(9):e44241. PubMed ID: 22970187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies.
    Kesavardhana S; Das R; Citron M; Datta R; Ecto L; Srilatha NS; DiStefano D; Swoyer R; Joyce JG; Dutta S; LaBranche CC; Montefiori DC; Flynn JA; Varadarajan R
    J Biol Chem; 2017 Jan; 292(1):278-291. PubMed ID: 27879316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of neutralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01.
    Li Y; O'Dell S; Walker LM; Wu X; Guenaga J; Feng Y; Schmidt SD; McKee K; Louder MK; Ledgerwood JE; Graham BS; Haynes BF; Burton DR; Wyatt RT; Mascola JR
    J Virol; 2011 Sep; 85(17):8954-67. PubMed ID: 21715490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope.
    Pritchard LK; Harvey DJ; Bonomelli C; Crispin M; Doores KJ
    J Virol; 2015 Sep; 89(17):8932-44. PubMed ID: 26085151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells.
    Rao PG; Lambert GS; Upadhyay C
    J Virol; 2023 Sep; 97(9):e0071023. PubMed ID: 37681958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.