These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30403428)

  • 21. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions.
    Kay D; St Clair Gibson A; Mitchell MJ; Lambert MI; Noakes TD
    J Electromyogr Kinesiol; 2000 Dec; 10(6):425-31. PubMed ID: 11102845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The modulation of corticospinal excitability and inhibition following acute resistance exercise in males and females.
    Latella C; Hendy A; Vanderwesthuizen D; Teo WP
    Eur J Sport Sci; 2018 Aug; 18(7):984-993. PubMed ID: 29746792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of postexercise blood flow occlusion on quadriceps responses to transcranial magnetic stimulation.
    Latella C; Pinto MD; Nuzzo JL; Taylor JL
    J Appl Physiol (1985); 2021 May; 130(5):1326-1336. PubMed ID: 33571056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb.
    Takahashi K; Maruyama A; Hirakoba K; Maeda M; Etoh S; Kawahira K; Rothwell JC
    Brain Stimul; 2011 Apr; 4(2):90-6. PubMed ID: 21511209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation.
    Bowtell JL; Avenell G; Hunter SP; Mileva KN
    PLoS One; 2013; 8(10):e77004. PubMed ID: 24098574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corticospinal excitability during shortening and lengthening actions with incremental torque output.
    Škarabot J; Tallent J; Goodall S; Durbaba R; Howatson G
    Exp Physiol; 2018 Dec; 103(12):1586-1592. PubMed ID: 30286253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of short- and long-interval intracortical inhibition with increasing motor evoked potential amplitude in a human hand muscle.
    Opie GM; Semmler JG
    Clin Neurophysiol; 2014 Jul; 125(7):1440-50. PubMed ID: 24345316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corticospinal changes induced by fatiguing eccentric versus concentric exercise.
    Garnier YM; Paizis C; Lepers R
    Eur J Sport Sci; 2019 Mar; 19(2):166-176. PubMed ID: 30016203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex.
    Lee H; Gunraj C; Chen R
    J Physiol; 2007 May; 580(Pt.3):1021-32. PubMed ID: 17303638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Submaximal isometric fatiguing exercise of the elbow flexors has no age-related effect on GABA
    Otieno LA; Semmler JG; Smith AE; Sidhu SK
    J Appl Physiol (1985); 2022 Jan; 132(1):167-177. PubMed ID: 34855523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute Neuromuscular and Microvascular Responses to Concentric and Eccentric Exercises With Blood Flow Restriction.
    Lauver JD; Cayot TE; Rotarius TR; Scheuermann BW
    J Strength Cond Res; 2020 Oct; 34(10):2725-2733. PubMed ID: 31524780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions.
    Baudry S; Duchateau J
    J Physiol; 2021 Mar; 599(5):1551-1566. PubMed ID: 33481277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles.
    Pitman BM; Semmler JG
    J Appl Physiol (1985); 2012 Sep; 113(6):929-36. PubMed ID: 22837166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of fascicle strain and corticospinal excitability during eccentric contractions on force loss.
    Doguet V; Nosaka K; Guével A; Ishimura K; Guilhem G; Jubeau M
    Exp Physiol; 2019 Oct; 104(10):1532-1543. PubMed ID: 31374136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contralateral effects of eccentric resistance training on immobilized arm.
    Valdes O; Ramirez C; Perez F; Garcia-Vicencio S; Nosaka K; Penailillo L
    Scand J Med Sci Sports; 2021 Jan; 31(1):76-90. PubMed ID: 32897568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the effects of muscle contraction and conditioning stimulus intensity on short-interval intracortical inhibition.
    Hendy AM; Ekblom MM; Latella C; Teo WP
    Eur J Neurosci; 2019 Oct; 50(7):3133-3140. PubMed ID: 31199534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses.
    Latella C; Teo WP; Harris D; Major B; VanderWesthuizen D; Hendy AM
    Eur J Appl Physiol; 2017 Nov; 117(11):2211-2224. PubMed ID: 28879576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimum Intensity of Daily Six Eccentric Contractions to Increase Muscle Strength and Size.
    Yoshida R; Murakami Y; Kasahara K; Sato S; Nosaka K; Nakamura M
    Scand J Med Sci Sports; 2024 Jun; 34(6):e14683. PubMed ID: 38898582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.