These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30403468)

  • 41. Significant Enhancement of Negative Thermal Expansion Under Low Pressure in Cu
    Shi N; Fan L; Xu Y; Yin W; Chen H; Yuan B; Zhou C; Chen J
    Small; 2024 Jun; ():e2312289. PubMed ID: 38924308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large and tunable negative thermal expansion induced by a synergistic effect in M
    Wang C; Chang D; Gao Q; Liu C; Wang Q; Huang X; Jia Y
    Phys Chem Chem Phys; 2020 Sep; 22(33):18655-18662. PubMed ID: 32794544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms and Materials for NTE.
    Attfield JP
    Front Chem; 2018; 6():371. PubMed ID: 30186833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong Negative Thermal Expansion in a Low-Cost and Facile Oxide of Cu
    Shi N; Sanson A; Gao Q; Sun Q; Ren Y; Huang Q; de Souza DO; Xing X; Chen J
    J Am Chem Soc; 2020 Feb; 142(6):3088-3093. PubMed ID: 31952444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quartz: structural and thermodynamic analyses across the α ↔ β transition with origin of negative thermal expansion (NTE) in β quartz and calcite.
    Antao SM
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Apr; 72(Pt 2):249-62. PubMed ID: 27048727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Size and crystal symmetry breaking effects on negative thermal expansion in ScF
    Wang C; Chang D; Wang J; Gao Q; Zhang Y; Niu C; Liu C; Jia Y
    Phys Chem Chem Phys; 2021 Nov; 23(43):24814-24822. PubMed ID: 34714310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Colossal Negative Thermal Expansion in Electron-Doped PbVO
    Yamamoto H; Imai T; Sakai Y; Azuma M
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8170-8173. PubMed ID: 29749074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Negative Thermal Expansion in ABC(MoO
    Zhao H; Qiao Y; Zhao K; Wang Q; Zhang P; Guo J; Chao M; Liang E; Gao Q
    Small; 2024 Jun; ():e2403000. PubMed ID: 38923124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adjusting Local Molecular Environment for Giant Ambient Thermal Contraction.
    Shen X; Connolly T; Huang Y; Colvin M; Wang C; Lu J
    Macromol Rapid Commun; 2016 Dec; 37(23):1904-1911. PubMed ID: 27191677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer.
    Takenaka K; Asai D; Kaizu R; Mizuno Y; Yokoyama Y; Okamoto Y; Katayama N; Suzuki HS; Imanaka Y
    Sci Rep; 2019 Jan; 9(1):122. PubMed ID: 30644408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced negative thermal expansion in La(1-x)Pr(x)Fe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium.
    Li W; Huang R; Wang W; Tan J; Zhao Y; Li S; Huang C; Shen J; Li L
    Inorg Chem; 2014 Jun; 53(11):5869-73. PubMed ID: 24848739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large negative thermal expansion in non-perovskite lead-free ferroelectric Sn2P2S6.
    Rong Y; Li M; Chen J; Zhou M; Lin K; Hu L; Yuan W; Duan W; Deng J; Xing X
    Phys Chem Chem Phys; 2016 Feb; 18(8):6247-51. PubMed ID: 26854264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bi-Material Negative Thermal Expansion Inverted Trapezoid Lattice based on A Composite Rod.
    Luo W; Xue S; Zhang M; Zhao C; Li G
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large Positive Thermal Expansion and Small Band Gap in Double-ReO
    Yang C; Qu BY; Pan SS; Zhang L; Zhang RR; Tong P; Xiao RC; Lin JC; Guo XG; Zhang K; Tong HY; Lu WJ; Wu Y; Lin S; Song WH; Sun YP
    Inorg Chem; 2017 May; 56(9):4990-4995. PubMed ID: 28406625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F
    Qin F; Chen J; Aydemir U; Sanson A; Wang L; Pan Z; Xu J; Sun C; Ren Y; Deng J; Yu R; Hu L; Snyder GJ; Xing X
    Inorg Chem; 2017 Sep; 56(18):10840-10843. PubMed ID: 28880085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework
    Jin QY; Liang YY; Zhang ZH; Meng L; Geng JS; Hu KQ; Yu JP; Chai ZF; Mei L; Shi WQ
    Chem Sci; 2023 Jun; 14(23):6330-6340. PubMed ID: 37325134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O
    Pan Z; Chen J; Jiang X; Hu L; Yu R; Yamamoto H; Ogata T; Hattori Y; Guo F; Fan X; Li Y; Li G; Gu H; Ren Y; Lin Z; Azuma M; Xing X
    J Am Chem Soc; 2017 Oct; 139(42):14865-14868. PubMed ID: 28994586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Negative Thermal Expansion in the Materials With Giant Magnetocaloric Effect.
    Hu F; Shen F; Hao J; Liu Y; Wang J; Sun J; Shen B
    Front Chem; 2018; 6():438. PubMed ID: 30320069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Octahedral Connectivity on the Negative Thermal Expansion of SrZrS
    Koocher NZ; Rondinelli JM
    Inorg Chem; 2023 Jul; 62(28):11134-11141. PubMed ID: 37410695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach.
    Grima JN; Bajada M; Scerri S; Attard D; Dudek KK; Gatt R
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150188. PubMed ID: 26345087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.