These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30403468)

  • 61. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation.
    Dove MT; Fang H
    Rep Prog Phys; 2016 Jun; 79(6):066503. PubMed ID: 27177210
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure and Negative Thermal Expansion in Zr
    Yuan H; Wang C; Gao Q; Ge X; Sun H; Lapidus SH; Guo J; Chao M; Jia Y; Liang E
    Inorg Chem; 2020 Mar; 59(6):4090-4095. PubMed ID: 32129614
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition.
    Xu K; Li Z; Liu E; Zhou H; Zhang Y; Jing C
    Sci Rep; 2017 Jan; 7():41675. PubMed ID: 28134355
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Zero thermal expansion in YbGaGe due to an electronic valence transition.
    Salvador JR; Guo F; Hogan T; Kanatzidis MG
    Nature; 2003 Oct; 425(6959):702-5. PubMed ID: 14562099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14).
    Wu Y; Peterson VK; Luks E; Darwish TA; Kepert CJ
    Angew Chem Int Ed Engl; 2014 May; 53(20):5175-8. PubMed ID: 24692065
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lightweight 3D Graphene Metamaterials with Tunable Negative Thermal Expansion.
    He P; Du T; Zhao K; Dong J; Liang Y; Zhang Q
    Adv Mater; 2023 Feb; 35(6):e2208562. PubMed ID: 36433757
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Negative Thermal Expansion Near the Precipice of Structural Stability in Open Perovskites.
    Occhialini CA; Guzmán-Verri GG; Handunkanda SU; Hancock JN
    Front Chem; 2018; 6():545. PubMed ID: 30515376
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study.
    Ho DT; Kwon SY; Park HS; Kim SY
    Nano Lett; 2017 Aug; 17(8):5113-5118. PubMed ID: 28678511
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis.
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2005 Nov; 127(44):15630-6. PubMed ID: 16262430
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Highly sensitive thermometry based on thermal quenching and negative thermal quenching materials.
    Lu H; Zhu J; Lu Y; Li J; Wang J; Zou H
    Opt Lett; 2022 Oct; 47(19):5168-5171. PubMed ID: 36181213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Anisotropic thermal expansion in a metal-organic framework.
    Madsen SR; Lock N; Overgaard J; Iversen BB
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Jun; 70(Pt 3):595-601. PubMed ID: 24892606
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Understanding Large Negative Thermal Expansion of NdFe(CN)
    Jiao Y; Gao Q; Sanson A; Liang E; Sun Q; Chen J
    Inorg Chem; 2022 May; 61(20):7813-7819. PubMed ID: 35543502
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Negative X-ray expansion in cadmium cyanide.
    Coates CS; Murray CA; Boström HLB; Reynolds EM; Goodwin AL
    Mater Horiz; 2021 May; 8(5):1446-1453. PubMed ID: 34846452
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unusual non-bulk properties in nanoscale materials: thermal metal-metal bond contraction of gamma-alumina-supported Pt catalysts.
    Kang JH; Menard LD; Nuzzo RG; Frenkel AI
    J Am Chem Soc; 2006 Sep; 128(37):12068-9. PubMed ID: 16967947
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thermomechanical properties of zero thermal expansion materials from theory and experiments.
    Erlebach A; Thieme C; Müller C; Hoffmann S; Höche T; Rüssel C; Sierka M
    Phys Chem Chem Phys; 2020 Sep; 22(33):18518-18525. PubMed ID: 32780039
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermal Expansion and Response to Pressure of Double-ReO
    Lloyd AJ; Masterson EB; Baxter SJ; Molaison JJ; Dos Santos AM; Wilkinson AP
    Inorg Chem; 2020 Oct; 59(19):13979-13987. PubMed ID: 32946229
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two Decades of Negative Thermal Expansion Research: Where Do We Stand?
    Lind C
    Materials (Basel); 2012 Jun; 5(6):1125-1154. PubMed ID: 28817027
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach.
    Baxter SJ; Schneemann A; Ready AD; Wijeratne P; Wilkinson AP; Burtch NC
    J Am Chem Soc; 2019 Aug; 141(32):12849-12854. PubMed ID: 31319663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Negative and zero thermal expansion in α-(Cu
    Shi N; Sanson A; Venier A; Fan L; Sun C; Xing X; Chen J
    Chem Commun (Camb); 2020 Sep; 56(73):10666-10669. PubMed ID: 32785300
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Negative Thermal Expansion HfV
    Liu GW; Zhang Y; Thomas MP; Ullah A; Pharr M; Guiton BS; Banerjee S
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44723-44732. PubMed ID: 34495625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.