These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30403625)

  • 1. Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
    Hoerig C; Ghaboussi J; Insana MF
    IEEE Trans Med Imaging; 2019 May; 38(5):1150-1160. PubMed ID: 30403625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-guided machine learning for 3-D quantitative quasi-static elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Phys Med Biol; 2020 Mar; 65(6):065011. PubMed ID: 32045891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-driven approach to characterizing nonlinear elastic behavior of soft materials.
    Wang Y; Ghaboussi J; Hoerig C; Insana MF
    J Mech Behav Biomed Mater; 2022 Jun; 130():105178. PubMed ID: 35364365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An information-based machine learning approach to elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Biomech Model Mechanobiol; 2017 Jun; 16(3):805-822. PubMed ID: 27858175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
    Pan X; Liu K; Bai J; Luo J
    Biomed Eng Online; 2014 Sep; 13():132. PubMed ID: 25194553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
    Pan X; Gao J; Shao J; Luo J; Bai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1132-5. PubMed ID: 24109892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear modulus decomposition algorithm in magnetic resonance elastography.
    Kwon OI; Park C; Nam HS; Woo EJ; Seo JK; Glaser KJ; Manduca A; Ehman RL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1526-33. PubMed ID: 19783495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
    Lu M; Zhang H; Wang J; Yuan J; Hu Z; Liu H
    Biomed Eng Online; 2013 Aug; 12():79. PubMed ID: 23937814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A; Salcudean S; Honarvar M; Sahebjavaher RS; Rohling R; Sinkus R
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1555-65. PubMed ID: 21813354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ultrasound elastography inverse problem and the effective criteria.
    Aghajani A; Haghpanahi M; Nikazad T
    Proc Inst Mech Eng H; 2013 Nov; 227(11):1203-12. PubMed ID: 23921546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithms for quantitative quasi-static elasticity imaging using force data.
    Tyagi M; Goenezen S; Barbone PE; Oberai AA
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1421-36. PubMed ID: 25073623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reconstruction of elasticity modulus distribution base on semi-supervised neural network].
    Zhang X; Peng B; Wang R; Wei X; Luo J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):262-271. PubMed ID: 38686406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the soft tissue ultrasound elastography using FEM based inversion approach.
    Eshaghinia SS; Taghvaeipour A; Aghdam MM; Rivaz H
    Proc Inst Mech Eng H; 2024 Mar; 238(3):271-287. PubMed ID: 38240143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.
    Arbabi V; Pouran B; Campoli G; Weinans H; Zadpoor AA
    J Biomech; 2016 Mar; 49(5):631-637. PubMed ID: 26944689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning hidden elasticity with deep neural networks.
    Chen CT; Gu GX
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasticity reconstructive imaging by means of stimulated echo MRI.
    Chenevert TL; Skovoroda AR; O'Donnell M; Emelianov SY
    Magn Reson Med; 1998 Mar; 39(3):482-90. PubMed ID: 9498605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated soft tissues.
    Perriñez PR; Kennedy FE; Van Houten EE; Weaver JB; Paulsen KD
    IEEE Trans Med Imaging; 2010 Mar; 29(3):746-55. PubMed ID: 20199912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment.
    Selladurai S; Thittai AK
    Ultrasonics; 2019 Mar; 93():7-17. PubMed ID: 30384008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.