BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30403644)

  • 21. Normalizing Spontaneous Reports Into MedDRA: Some Experiments With MagiCoder.
    Combi C; Zorzi M; Pozzani G; Arzenton E; Moretti U
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):95-102. PubMed ID: 30059326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA.
    Wu L; Ingle T; Liu Z; Zhao-Wong A; Harris S; Thakkar S; Zhou G; Yang J; Xu J; Mehta D; Ge W; Tong W; Fang H
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):97. PubMed ID: 30871458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions.
    Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E
    J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs.
    Hur J; Özgür A; He Y
    J Biomed Semantics; 2018 Jun; 9(1):17. PubMed ID: 29880031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring Spanish health social media for detecting drug effects.
    Segura-Bedmar I; Martínez P; Revert R; Moreno-Schneider J
    BMC Med Inform Decis Mak; 2015; 15 Suppl 2(Suppl 2):S6. PubMed ID: 26100267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraction of drug-drug interaction using neural embedding.
    Hou WJ; Ceesay B
    J Bioinform Comput Biol; 2018 Dec; 16(6):1840027. PubMed ID: 30567477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.
    Banda JM; Callahan A; Winnenburg R; Strasberg HR; Cami A; Reis BY; Vilar S; Hripcsak G; Dumontier M; Shah NH
    Drug Saf; 2016 Jan; 39(1):45-57. PubMed ID: 26446143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Risk Prediction of Cardiovascular Diseases via Attention-Based Deep Neural Networks.
    An Y; Huang N; Chen X; Wu F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1093-1105. PubMed ID: 31425047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern mining for extraction of mentions of Adverse Drug Reactions from user comments.
    Nikfarjam A; Gonzalez GH
    AMIA Annu Symp Proc; 2011; 2011():1019-26. PubMed ID: 22195162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Mining Template of Predictive Temporal Clinical Event Patterns From Patient Electronic Medical Records.
    Li J; Tan X; Xu X; Wang F
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2138-2147. PubMed ID: 30346297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A knowledge graph embedding based approach to predict the adverse drug reactions using a deep neural network.
    Joshi P; V M; Mukherjee A
    J Biomed Inform; 2022 Aug; 132():104122. PubMed ID: 35753606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of patient reporting of adverse drug reactions to the UK 'Yellow Card Scheme': literature review, descriptive and qualitative analyses, and questionnaire surveys.
    Avery AJ; Anderson C; Bond CM; Fortnum H; Gifford A; Hannaford PC; Hazell L; Krska J; Lee AJ; McLernon DJ; Murphy E; Shakir S; Watson MC
    Health Technol Assess; 2011 May; 15(20):1-234, iii-iv. PubMed ID: 21545758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adverse drug reaction detection via a multihop self-attention mechanism.
    Zhang T; Lin H; Ren Y; Yang L; Xu B; Yang Z; Wang J; Zhang Y
    BMC Bioinformatics; 2019 Sep; 20(1):479. PubMed ID: 31533622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-channel fusion LSTM for medical event prediction using EHRs.
    Liu S; Wang X; Xiang Y; Xu H; Wang H; Tang B
    J Biomed Inform; 2022 Mar; 127():104011. PubMed ID: 35176451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using linked data for mining drug-drug interactions in electronic health records.
    Pathak J; Kiefer RC; Chute CG
    Stud Health Technol Inform; 2013; 192():682-6. PubMed ID: 23920643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network.
    Wu Y; Jiang M; Lei J; Xu H
    Stud Health Technol Inform; 2015; 216():624-8. PubMed ID: 26262126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.