These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30403736)

  • 21. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A speech-controlled environmental control system for people with severe dysarthria.
    Hawley MS; Enderby P; Green P; Cunningham S; Brownsell S; Carmichael J; Parker M; Hatzis A; O'Neill P; Palmer R
    Med Eng Phys; 2007 Jun; 29(5):586-93. PubMed ID: 17049905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LeRec: a NN/HMM hybrid for on-line handwriting recognition.
    Bengio Y; LeCun Y; Nohl C; Burges C
    Neural Comput; 1995 Nov; 7(6):1289-303. PubMed ID: 7584903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
    Abu-Alqumsan M; Ebert F; Peer A
    J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Representation Learning Based Speech Assistive System for Persons With Dysarthria.
    Chandrakala S; Rajeswari N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1510-1517. PubMed ID: 27992342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel approach to neuro-fuzzy classification.
    Ghosh A; Shankar BU; Meher SK
    Neural Netw; 2009 Jan; 22(1):100-9. PubMed ID: 19004614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myoelectric signal classification for phoneme-based speech recognition.
    Scheme EJ; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):694-9. PubMed ID: 17405376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward optimizing stream fusion in multistream recognition of speech.
    Mesgarani N; Thomas S; Hermansky H
    J Acoust Soc Am; 2011 Jul; 130(1):EL14-8. PubMed ID: 21786862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frame-by-frame language identification in short utterances using deep neural networks.
    Gonzalez-Dominguez J; Lopez-Moreno I; Moreno PJ; Gonzalez-Rodriguez J
    Neural Netw; 2015 Apr; 64():49-58. PubMed ID: 25242129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust audio-visual speech recognition under noisy audio-video conditions.
    Stewart D; Seymour R; Pass A; Ming J
    IEEE Trans Cybern; 2014 Feb; 44(2):175-84. PubMed ID: 23757540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the use of durational information in human spoken-word recognition.
    Scharenborg O
    J Acoust Soc Am; 2010 Jun; 127(6):3758-70. PubMed ID: 20550274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cochlea-inspired speech recognition interface.
    Russo M; Stella M; Sikora M; Šarić M
    Med Biol Eng Comput; 2019 Jun; 57(6):1393-1403. PubMed ID: 30830542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feature selection environment for genomic applications.
    Lopes FM; Martins DC; Cesar RM
    BMC Bioinformatics; 2008 Oct; 9():451. PubMed ID: 18945362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hidden Markov models combining discrete symbols and continuous attributes in handwriting recognition.
    Xue H; Govindaraju V
    IEEE Trans Pattern Anal Mach Intell; 2006 Mar; 28(3):458-62. PubMed ID: 16526430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network.
    Zhao J; Lv Y; Zhou Z; Cao F
    Neural Netw; 2017 Oct; 94():115-124. PubMed ID: 28772239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.