BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30404070)

  • 1. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke.
    Zheng M; Han Y; Xu C; Zhang Z; Han H
    Sci Total Environ; 2019 Feb; 653():64-73. PubMed ID: 30404070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.
    Tong K; Lin A; Ji G; Wang D; Wang X
    J Hazard Mater; 2016 May; 308():113-9. PubMed ID: 26808249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic degradation on phenolic compounds of coal pyrolysis wastewater (CPW) by lignite activated coke-active sludge (LAC-AS) process: Insights into succession of microbial community under selective pressure.
    Zheng M; Han Y; Han H; Xu C; Zhang Z; Ma W
    Bioresour Technol; 2019 Jun; 281():126-134. PubMed ID: 30818263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic pollution removal from coke plant wastewater using coking coal.
    Gao L; Li S; Wang Y; Sun H
    Water Sci Technol; 2015; 72(1):158-63. PubMed ID: 26114284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe
    Zheng M; Han H; Shi J; Zhang Z; Ma W; Xu C
    J Hazard Mater; 2021 Jul; 414():125387. PubMed ID: 33676245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.
    Dehua M; Cong L; Xiaobiao Z; Rui L; Lujun C
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18343-52. PubMed ID: 27278071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into electroactive biofilms for enhanced phenolic degradation of coal pyrolysis wastewater (CPW) by magnetic activated coke (MAC): Metagenomic analysis in attached biofilm and suspended sludge.
    Zheng M; Shi J; Xu C; Han Y; Zhang Z; Han H
    J Hazard Mater; 2020 Aug; 395():122688. PubMed ID: 32335283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological and functional research into microbiomes for targeted phenolic removal in anoxic carbon-based fluidized bed reactor (CBFBR) treating coal pyrolysis wastewater (CPW).
    Zheng M; Shi J; Xu C; Ma W; Zhang Z; Zhu H; Han H
    Bioresour Technol; 2020 Jul; 308():123308. PubMed ID: 32278997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects and mechanistic aspects of absorbing organic compounds by coking coal.
    Ning K; Wang J; Xu H; Sun X; Huang G; Liu G; Zhou L
    Water Sci Technol; 2017 Nov; 76(9-10):2280-2290. PubMed ID: 29144286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale.
    Zheng M; Zhu H; Han Y; Xu C; Zhang Z; Han H
    Bioresour Technol; 2019 Sep; 288():121590. PubMed ID: 31195361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.
    Ma X; Wang X; Liu Y; Gao J; Wang Y
    Ecotoxicol Environ Saf; 2017 Apr; 138():163-169. PubMed ID: 28049073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced phenol removal in an innovative lignite activated coke-assisted biological process.
    Zhang C; Li J; Cheng F; Liu Y
    Bioresour Technol; 2018 Jul; 260():357-363. PubMed ID: 29649728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process.
    Liu Y; Liu J; Zhang A; Liu Z
    Environ Pollut; 2017 Jan; 220(Pt A):13-19. PubMed ID: 27707598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles.
    Han N; Cui R; Peng H; Gao R; He Q; Miao Z
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments.
    Ren J; Li J; Li J; Chen Z; Cheng F
    Chemosphere; 2019 May; 222():431-439. PubMed ID: 30716545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of typical cyclic compounds and selection of toxicity evaluation bioassays for coal gasification wastewater (CGW) based on toxicity mechanism of actions (MOAs).
    Zheng M; Han Y; Xu C; Han H; Zhang Z
    Sci Total Environ; 2018 Dec; 644():324-334. PubMed ID: 29981980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.
    Jia S; Han H; Hou B; Zhuang H; Fang F; Zhao Q
    Chemosphere; 2014 Dec; 117():753-9. PubMed ID: 25461944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe
    Ma W; Zhang S; Chen Y; Zhong D; Du Q; Li J; Li R; Du X; Zhang J; Yu T
    Environ Res; 2022 Oct; 213():113601. PubMed ID: 35660564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment.
    Zhao W; Sui Q; Huang X
    Sci Total Environ; 2018 Sep; 635():716-724. PubMed ID: 29680762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions.
    Schrank SG; José HJ; Moreira RF; Schröder HF
    Chemosphere; 2004 Aug; 56(5):411-23. PubMed ID: 15212906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.