These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30404259)

  • 21. Femtoliter nanofluidic valve utilizing glass deformation.
    Kazoe Y; Pihosh Y; Takahashi H; Ohyama T; Sano H; Morikawa K; Mawatari K; Kitamori T
    Lab Chip; 2019 Apr; 19(9):1686-1694. PubMed ID: 30942790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic serial dilution circuit.
    Paegel BM; Grover WH; Skelley AM; Mathies RA; Joyce GF
    Anal Chem; 2006 Nov; 78(21):7522-7. PubMed ID: 17073422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manufacturable plastic microfluidic valves using thermal actuation.
    Pitchaimani K; Sapp BC; Winter A; Gispanski A; Nishida T; Hugh Fan Z
    Lab Chip; 2009 Nov; 9(21):3082-7. PubMed ID: 19823723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.
    Tangen U; Sharma A; Wagler P; McCaskill JS
    Biomicrofluidics; 2015 Jan; 9(1):014119. PubMed ID: 25759752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printed microfluidic devices with integrated valves.
    Rogers CI; Qaderi K; Woolley AT; Nordin GP
    Biomicrofluidics; 2015 Jan; 9(1):016501. PubMed ID: 25610517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Green microfluidic devices made of corn proteins.
    Luecha J; Hsiao A; Brodsky S; Liu GL; Kokini JL
    Lab Chip; 2011 Oct; 11(20):3419-25. PubMed ID: 21918783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
    Cheng C; Aplin FP; Fridman GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3544-3548. PubMed ID: 33018768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp.
    Kung YC; Huang KW; Fan YJ; Chiou PY
    Lab Chip; 2015 Apr; 15(8):1861-8. PubMed ID: 25710255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance.
    Wang X; Agasid MT; Baker CA; Aspinwall CA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Latchable microfluidic valve arrays based on shape memory polymer actuators.
    Aksoy B; Besse N; Boom RJ; Hoogenberg BJ; Blom M; Shea H
    Lab Chip; 2019 Feb; 19(4):608-617. PubMed ID: 30662992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic device fabrication mediated by surface chemical bonding.
    Sivakumar R; Lee NY
    Analyst; 2020 Jun; 145(12):4096-4110. PubMed ID: 32451519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Luer-lock valve: A pre-fabricated pneumatic valve for 3D printed microfluidic automation.
    Nie M; Takeuchi S
    Biomicrofluidics; 2020 Jul; 14(4):044115. PubMed ID: 32849974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies.
    Micheal Raj P; Barbe L; Andersson M; De Albuquerque Moreira M; Haase D; Wootton J; Nehzati S; Terry AE; Friel RJ; Tenje M; Sigfridsson Clauss KGV
    RSC Adv; 2021 Sep; 11(47):29859-29869. PubMed ID: 35479529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates.
    Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustically enriching, large-depth aquatic sampler.
    Jonsson J; Ogden S; Johansson L; Hjort K; Thornell G
    Lab Chip; 2012 May; 12(9):1619-28. PubMed ID: 22422039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic large-scale integration.
    Thorsen T; Maerkl SJ; Quake SR
    Science; 2002 Oct; 298(5593):580-4. PubMed ID: 12351675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.