These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30404259)

  • 41. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.
    Nashida N; Satoh W; Fukuda J; Suzuki H
    Biosens Bioelectron; 2007 Jun; 22(12):3167-73. PubMed ID: 17383171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermally-actuated microfluidic membrane valve for point-of-care applications.
    Sesen M; Rowlands CJ
    Microsyst Nanoeng; 2021; 7():48. PubMed ID: 34567761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic Device for Capture and Isolation of Single Cells.
    Hsiao AP; Barbee KD; Huang X
    Proc SPIE Int Soc Opt Eng; 2010 Aug; 7759():. PubMed ID: 21614137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application.
    Ren W; Kim H; Lee HJ; Wang J; Wang H; Kim DP
    Lab Chip; 2014 Nov; 14(21):4263-9. PubMed ID: 25210977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-layer microfluidic glass chips for microanalytical applications.
    Daridon A; Fascio V; Lichtenberg J; Wütrich R; Langen H; Verpoorte E; de Rooij NF
    Fresenius J Anal Chem; 2001 Sep; 371(2):261-9. PubMed ID: 11678200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control.
    Kang DH; Kim NK; Park SW; Lee W; Kang HW
    Lab Chip; 2020 Nov; 20(23):4433-4441. PubMed ID: 32832953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assembly and simple demonstration of a micropump installing PDMS-based thin membranes as flexible micro check valves.
    Tanaka Y; Sato K; Kitamori T
    J Biomed Nanotechnol; 2009 Oct; 5(5):516-20. PubMed ID: 20201426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of an integrated microfluidic solid-phase extraction and electrophoresis device.
    Kumar S; Sahore V; Rogers CI; Woolley AT
    Analyst; 2016 Mar; 141(5):1660-8. PubMed ID: 26820409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding.
    Jung W; Uddin MJ; Namkoong K; Chung W; Kim JH; Shim JS
    RSC Adv; 2020 Jul; 10(47):28390-28396. PubMed ID: 35519138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
    Wlodarczyk KL; Hand DP; Maroto-Valer MM
    Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator.
    Xie S; Wu J; Tang B; Zhou G; Jin M; Shui L
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device.
    Li C; Liu C; Xu Z; Li J
    Biomed Microdevices; 2012 Jun; 14(3):565-72. PubMed ID: 22426924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of a Pneumatic Microparticle Concentrator.
    Jang JH; Jeong OC
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.