BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30404306)

  • 1. Integration of a Droplet-Based Microfluidic System and Silicon Nanoribbon FET Sensor.
    Afrasiabi R; Soderberg LM; Joensson HN; Björk P; Andersson Svahn H; Linnros J
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact Nanowire Sensors Probe Microdroplets.
    Schütt J; Ibarlucea B; Illing R; Zörgiebel F; Pregl S; Nozaki D; Weber WM; Mikolajick T; Baraban L; Cuniberti G
    Nano Lett; 2016 Aug; 16(8):4991-5000. PubMed ID: 27417510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection.
    Bao Z; Sun J; Zhao X; Li Z; Cui S; Meng Q; Zhang Y; Wang T; Jiang Y
    Int J Nanomedicine; 2017; 12():4623-4631. PubMed ID: 28721039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography.
    Lim CM; Lee IK; Lee KJ; Oh YK; Shin YB; Cho WJ
    Sci Technol Adv Mater; 2017; 18(1):17-25. PubMed ID: 28179955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Droplet-Storage Array.
    Rho HS; Gardeniers H
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32585943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosensors-Assisted Quantitative Analysis of Biochemical Processes in Droplets.
    Belyaev D; Schütt J; Ibarlucea B; Rim T; Baraban L; Cuniberti G
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991863
    [No Abstract]   [Full Text] [Related]  

  • 8. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.
    Lee S; Hong SJ; Yoo HJ; Ahn JH; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):944-8. PubMed ID: 23858958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time precise microfluidic droplets label-sequencing combined in a velocity detection sensor.
    Zamboni R; Zaltron A; Chauvet M; Sada C
    Sci Rep; 2021 Sep; 11(1):17987. PubMed ID: 34504237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon fluorescence lifetime for label-free microfluidic droplet sorting.
    Hasan S; Blaha ME; Piendl SK; Das A; Geissler D; Belder D
    Anal Bioanal Chem; 2022 Jan; 414(1):721-730. PubMed ID: 34792636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attomole-Level Multiplexed Detection of Neurochemicals in Picoliter Droplets by On-Chip Nanoelectrospray Ionization Coupled to Mass Spectrometry.
    Zhang Y; Li K; Zhao Y; Shi W; Iyer H; Kim S; Brenden C; Sweedler JV; Vlasov Y
    Anal Chem; 2022 Oct; 94(40):13804-13809. PubMed ID: 36166829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip.
    Gerhardt RF; Peretzki AJ; Piendl SK; Belder D
    Anal Chem; 2017 Dec; 89(23):13030-13037. PubMed ID: 29096060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents.
    Peretzki AJ; Belder D
    J Chromatogr A; 2020 Feb; 1612():460653. PubMed ID: 31706581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform.
    Zhang Y; Kim S; Shi W; Zhao Y; Park I; Brenden C; Iyer H; Jha P; Bashir R; Sweedler JV; Vlasov Y
    Lab Chip; 2021 Dec; 22(1):40-46. PubMed ID: 34897344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Dielectrophoresis-Based Liquid Metal Droplet Control Microfluidic Device.
    Tian L; Ye Z; Gui L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application.
    Choi K; Kim JY; Ahn JH; Choi JM; Im M; Choi YK
    Lab Chip; 2012 Apr; 12(8):1533-9. PubMed ID: 22402581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.