BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30404306)

  • 21. An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets.
    Wink K; Mahler L; Beulig JR; Piendl SK; Roth M; Belder D
    Anal Bioanal Chem; 2018 Nov; 410(29):7679-7687. PubMed ID: 30269162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications.
    Moraes da Silva Junior S; Bento Ribeiro LE; Fruett F; Stiens J; Swart JW; Moshkalev S
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.
    Yesiloz G; Boybay MS; Ren CL
    Lab Chip; 2015 Oct; 15(20):4008-19. PubMed ID: 26351007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive Electrical Detection of Follicle-Stimulating Hormone Using a Functionalized Silicon Nanowire Transistor Chemosensor.
    Lee M; Palanisamy S; Zhou BH; Wang LY; Chen CY; Lee CY; Yuan SF; Wang YM
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36120-36127. PubMed ID: 30256613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection.
    Stoop RL; Wipf M; Müller S; Bedner K; Wright IA; Martin CJ; Constable EC; Fanget A; Schönenberger C; Calame M
    Biosensors (Basel); 2016 May; 6(2):21. PubMed ID: 27164151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics.
    Zafar S; D'Emic C; Jagtiani A; Kratschmer E; Miao X; Zhu Y; Mo R; Sosa N; Hamann H; Shahidi G; Riel H
    ACS Nano; 2018 Jul; 12(7):6577-6587. PubMed ID: 29932634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics.
    Wang R; Zhou Y; Ghanbari Ghalehjoughi N; Mawaldi Y; Wang X
    Anal Chem; 2021 Oct; 93(40):13694-13702. PubMed ID: 34590485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of Droplet Microfluidic Tools for Single-Cell Functional Metagenomics: An Engineering Head Start.
    Conchouso D; Al-Ma'abadi A; Behzad H; Alarawi M; Hosokawa M; Nishikawa Y; Takeyama H; Mineta K; Gojobori T
    Genomics Proteomics Bioinformatics; 2021 Jun; 19(3):504-518. PubMed ID: 34952209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unveiling the Potential of Droplet Generation, Sorting, Expansion, and Restoration in Microfluidic Biochips.
    Chiu YL; Yadav RAK; Huang HY; Wang YW; Yao DJ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31698735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons.
    Chang Y; Hui Z; Wang X; Qu H; Pang W; Duan X
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29370109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].
    Yuan H; Dong L; Tu R; Du W; Ji S; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):139-46. PubMed ID: 24818488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic sorting of microfluidic droplets at kHz rates using optical absorbance.
    Richter ES; Link A; McGrath JS; Sparrow RW; Gantz M; Medcalf EJ; Hollfelder F; Franke T
    Lab Chip; 2022 Dec; 23(1):195-202. PubMed ID: 36472476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation.
    Ho CMB; Sun Q; Teo AJT; Wibowo D; Gao Y; Zhou J; Huang Y; Tan SH; Zhao CX
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3630-3637. PubMed ID: 33463156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.
    Tahirbegi IB; Ehgartner J; Sulzer P; Zieger S; Kasjanow A; Paradiso M; Strobl M; Bouwes D; Mayr T
    Biosens Bioelectron; 2017 Feb; 88():188-195. PubMed ID: 27523821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.