These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30404306)

  • 41. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis.
    Hunt TP; Issadore D; Westervelt RM
    Lab Chip; 2008 Jan; 8(1):81-7. PubMed ID: 18094765
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters.
    Nightingale AM; Hassan SU; Warren BM; Makris K; Evans GWH; Papadopoulou E; Coleman S; Niu X
    Environ Sci Technol; 2019 Aug; 53(16):9677-9685. PubMed ID: 31352782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH measurements of FET-based (bio)chemical sensors using portable measurement system.
    Voitsekhivska T; Zorgiebel F; Suthau E; Wolter KJ; Bock K; Cuniberti G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6445-8. PubMed ID: 26737768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplexed detection of micro-RNAs based on microfluidic multi-color fluorescence droplets.
    Ye WQ; Wei YX; Zhang YZ; Yang CG; Xu ZR
    Anal Bioanal Chem; 2020 Jan; 412(3):647-655. PubMed ID: 31836924
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit.
    Tseng CW; Wen C; Huang DC; Lai CH; Chen S; Hu Q; Chen X; Xu X; Zhang SL; Tao YT; Zhang Z
    Adv Sci (Weinh); 2020 Jan; 7(2):1901001. PubMed ID: 31993278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection.
    Ozhikandathil J; Packirisamy M
    J Biomed Opt; 2012 Jan; 17(1):017006. PubMed ID: 22352672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microwave sensing and heating of individual droplets in microfluidic devices.
    Boybay MS; Jiao A; Glawdel T; Ren CL
    Lab Chip; 2013 Oct; 13(19):3840-6. PubMed ID: 23896699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE.
    Errando-Herranz C; Saharil F; Romero AM; Sandström N; Shafagh RZ; van der Wijngaart W; Haraldsson T; Gylfason KB
    Opt Express; 2013 Sep; 21(18):21293-8. PubMed ID: 24104003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silicon photonic sensors incorporated in a digital microfluidic system.
    Lerma Arce C; Witters D; Puers R; Lammertyn J; Bienstman P
    Anal Bioanal Chem; 2012 Dec; 404(10):2887-94. PubMed ID: 22926129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring and external control of pH in microfluidic droplets during microbial culturing.
    Tovar M; Mahler L; Buchheim S; Roth M; Rosenbaum MA
    Microb Cell Fact; 2020 Jan; 19(1):16. PubMed ID: 31996234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.
    Dong T; Barbosa C
    Sensors (Basel); 2015 Jan; 15(2):2694-708. PubMed ID: 25629705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical calorimetry in microfluidic droplets.
    Chamoun J; Pattekar A; Afshinmanesh F; Martini J; Recht MI
    Lab Chip; 2018 May; 18(11):1581-1592. PubMed ID: 29745386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Versatile on-demand droplet generation for controlled encapsulation.
    Rhee M; Liu P; Meagher RJ; Light YK; Singh AK
    Biomicrofluidics; 2014 May; 8(3):034112. PubMed ID: 25379072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Manipulation of microfluidic droplets by electrorheological fluid.
    Zhang M; Gong X; Wen W
    Electrophoresis; 2009 Sep; 30(18):3116-23. PubMed ID: 19722203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Low-Cost and High-Resolution Droplet Position Detector for an Intelligent Electrowetting on Dielectric Device.
    Li Y; Li H; Baker RJ
    J Lab Autom; 2015 Dec; 20(6):663-9. PubMed ID: 25609255
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor.
    Zhu X; Xu L; Wu T; Xu A; Zhao M; Liu S
    Biosens Bioelectron; 2014 May; 55():438-45. PubMed ID: 24441024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.