These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30404311)

  • 1. An Implantable Intravascular Pressure Sensor for a Ventricular Assist Device.
    Brancato L; Keulemans G; Verbelen T; Meyns B; Puers R
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of an Implantable Blood Pressure Sensor Packaged by Ultrafast Laser Microwelding.
    Kim S; Park J; So S; Ahn S; Choi J; Koo C; Joung YH
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30991708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure.
    Zhou MD; Yang C; Liu Z; Cysyk JP; Zheng SY
    Biomed Microdevices; 2012 Feb; 14(1):235-45. PubMed ID: 21997499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-pressure sensor for continuous monitoring of a ventricular assist device.
    Nitta S; Katahira Y; Yambe T; Sonobe T; Hayashi H; Tanaka M; Sato N; Miura M; Mohri H; Esashi M
    Int J Artif Organs; 1990 Dec; 13(12):823-9. PubMed ID: 2289835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.
    Xue N; Wang C; Liu C; Sun J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LONG-TERM EVALUATION OF A NON-HERMETIC MICROPACKAGE TECHNOLOGY FOR MEMS-BASED, IMPLANTABLE PRESSURE SENSORS.
    Wang P; Majerus SJA; Karam R; Hanzlicek B; Lin DL; Zhu H; Anderson JM; Damaser MS; Zorman CA; Ko WH
    Int Solid State Sens Actuators Microsyst Conf; 2015 Jun; 2015():484-487. PubMed ID: 33898111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Sensitivity MEMS Strain Sensor: Design and Simulation.
    Mohammed AA; Moussa WA; Lou E
    Sensors (Basel); 2008 Apr; 8(4):2642-2661. PubMed ID: 27879841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System.
    Zhang J; Chen J; Li M; Ge Y; Wang T; Shan P; Mao X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists.
    Chen LT; Chang JS; Hsu CY; Cheng WH
    Sensors (Basel); 2009; 9(8):6200-18. PubMed ID: 22454580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFM-Based Characterization Method of Capacitive MEMS Pressure Sensors for Cardiological Applications.
    Miguel JA; Lechuga Y; Martinez M
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Subcubic Millimeter Wireless Implantable Intraocular Pressure Monitor Microsystem.
    Bhamra H; Tsai JW; Huang YW; Yuan Q; Shah JV; Irazoqui P
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1204-1215. PubMed ID: 29293418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.
    Yao Z; Liang T; Jia P; Hong Y; Qi L; Lei C; Zhang B; Xiong J
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Universal packaging technique for low-drift implantable pressure sensors.
    Kim A; Powell CR; Ziaie B
    Biomed Microdevices; 2016 Apr; 18(2):32. PubMed ID: 26945864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.
    Kim A; Powell CR; Ziaie B
    Int Solid State Sens Actuators Microsyst Conf; 2015 Jun; 2015():476-479. PubMed ID: 27868110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.
    Nishida M; Kosaka R; Maruyama O; Yamane T; Shirasu A; Tatsumi E; Taenaka Y
    J Artif Organs; 2017 Mar; 20(1):26-33. PubMed ID: 27815718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Fabrication Technology for Clamped Micron-Thick Titanium Diaphragms Used for the Packaging of an Implantable MEMS Acoustic Transducer.
    Prochazka L; Huber A; Schneider M; Ghafoor N; Birch J; Pfiffner F
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.
    Mansoor M; Haneef I; Akhtar S; Rafiq MA; De Luca A; Ali SZ; Udrea F
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines.
    Liu H; Yu Z; Liu Y; Fang X
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an inlet pressure sensor for control in a left ventricular assist device.
    Fritz B; Cysyk J; Newswanger R; Weiss W; Rosenberg G
    ASAIO J; 2010; 56(3):180-5. PubMed ID: 20335797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature Compensated Fibre Bragg Grating Pressure Sensor for Ventricular Assist Devices.
    Stephens AF; Busch A; Gregory SD; Salamonsen RF; Tansley G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.