These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3040434)

  • 1. Non-stereospecific excitatory actions of morphine may be due to GABA-A receptor blockade.
    Jacquet YF; Saederup E; Squires RF
    Eur J Pharmacol; 1987 Jun; 138(2):285-8. PubMed ID: 3040434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory amino acids: role in morphine excitation in rat periaqueductal gray.
    Jacquet YF; Squires RF
    Behav Brain Res; 1988 Nov; 31(1):85-8. PubMed ID: 2852493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation by morphine of aversive-like behavior induced by GABAergic blockade in periaqueductal gray or medial hypothalamus.
    Jenck F; Moreau JL; Karli P
    Pharmacol Biochem Behav; 1988 Sep; 31(1):193-200. PubMed ID: 3252250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of CNS depressants on GABA receptor chloride ionophore complexes.
    Gábor M
    Acta Pharm Hung; 1989 Jul; 59(4):173-7. PubMed ID: 2549762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local administration of morphine decreases the extracellular level of GABA in the periaqueductal gray matter of freely moving rats.
    Stiller CO; Bergquist J; Beck O; Ekman R; Brodin E
    Neurosci Lett; 1996 May; 209(3):165-8. PubMed ID: 8736636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats.
    Stiller CO; Gustafsson H; Fried K; Brodin E
    Brain Res; 1997 Nov; 774(1-2):149-58. PubMed ID: 9452203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic morphine reduces GABA release in the lateral but not the medial portion of the midbrain periaqueductal gray of the rat.
    Renno WM; Mullett MA; Beitz AJ
    Brain Res; 1992 Oct; 594(2):221-32. PubMed ID: 1450948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional gamma-aminobutyric acid sensitivity of t-butylbicyclophosphoro[35S]thionate binding depends on gamma-aminobutyric acidA receptor alpha subunit.
    Korpi ER; Lüddens H
    Mol Pharmacol; 1993 Jul; 44(1):87-92. PubMed ID: 8393526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray.
    Morgan MM; Whitney PK; Gold MS
    Brain Res; 1998 Aug; 804(1):159-66. PubMed ID: 9729359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of benzodiazepine binding site ligands on [35S] t-butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain: an autoradiographic study.
    Concas A; Gehlert DR; Wamsley JK; Yamamura HI
    Adv Biochem Psychopharmacol; 1986; 41():227-38. PubMed ID: 3017072
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxadiazolylimidazobenzodiazepines, a new class of benzodiazepine receptor ligands.
    Jensen LH; Wätjen F; Honoré T; Hansen JB; Engelstoft M; Schmiechen R
    Adv Biochem Psychopharmacol; 1988; 45():209-17. PubMed ID: 2845736
    [No Abstract]   [Full Text] [Related]  

  • 12. The biochemical and behavioral effects of phospholipase A2 and morphine microinjections in the periaqueductal gray of the rat.
    Reichman M; Abood LG; Costanzo M
    Life Sci; 1985 Feb; 36(6):515-23. PubMed ID: 3968975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of the barbiturate-modulated benzodiazepine/GABA receptor protein complex.
    Olsen RW; Stauber GB; King RG; Yang J; Dilber A
    Adv Biochem Psychopharmacol; 1986; 41():21-32. PubMed ID: 3017071
    [No Abstract]   [Full Text] [Related]  

  • 14. "Ex vivo" binding of 35S-TBPS as a tool to study the pharmacology of GABAA receptors.
    Concas A; Sanna E; Serra M; Mascia MP; Santoro V; Biggio G
    Adv Biochem Psychopharmacol; 1990; 46():89-108. PubMed ID: 1963271
    [No Abstract]   [Full Text] [Related]  

  • 15. GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system.
    Olsen RW; McCabe RT; Wamsley JK
    J Chem Neuroanat; 1990; 3(1):59-76. PubMed ID: 2156526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of 36Cl- flux and 35S-TBPS binding induced by stress and gabaergic drugs.
    Concas A; Serra M; Corda MG; Biggio G
    Adv Biochem Psychopharmacol; 1988; 45():227-46. PubMed ID: 2902743
    [No Abstract]   [Full Text] [Related]  

  • 17. (+/-)-4-tert-butyl-3-cyano-1-(4-ethynylphenyl)-2,6,7-trioxabi cyclo[2.2.2]octane: synthesis of a remarkably potent GABAA receptor antagonist.
    Palmer CJ; Cole LM; Carida JE
    J Med Chem; 1988 Jun; 31(6):1064-6. PubMed ID: 2836586
    [No Abstract]   [Full Text] [Related]  

  • 18. GABAergic involvement in the antinociceptive effects of morphine at the level of the periaqueductal gray matter in the rat.
    Depaulis A; Morgan MM; Liebeskind JC
    Proc West Pharmacol Soc; 1985; 28():143-5. PubMed ID: 2999805
    [No Abstract]   [Full Text] [Related]  

  • 19. GABAA receptor blockers reverse the inhibitory effect of GABA on brain-specific [35S]TBPS binding.
    Squires RF; Saederup E
    Brain Res; 1987 Jun; 414(2):357-64. PubMed ID: 3040167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic administration of negative modulators produces chemical kindling and GABAA receptor down-regulation.
    Corda MG; Giorgi O; Orlandi M; Longoni B; Biggio G
    Adv Biochem Psychopharmacol; 1990; 46():153-66. PubMed ID: 1963264
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.