These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30404368)

  • 1. Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects.
    Yuan D; Pan C; Zhang J; Yan S; Zhao Q; Alici G; Li W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics.
    Zhou Y; Ma Z; Ai Y
    Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning with Coflow Systems.
    Lee D; Nam SM; Kim JA; Di Carlo D; Lee W
    Anal Chem; 2018 Feb; 90(4):2902-2911. PubMed ID: 29376342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle focusing in staged inertial microfluidic devices for flow cytometry.
    Oakey J; Applegate RW; Arellano E; Di Carlo D; Graves SW; Toner M
    Anal Chem; 2010 May; 82(9):3862-7. PubMed ID: 20373755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding.
    Li D; Lu X; Xuan X
    Anal Chem; 2016 Dec; 88(24):12303-12309. PubMed ID: 28193020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels.
    Zhang J; Yuan D; Zhao Q; Teo AJT; Yan S; Ooi CH; Li W; Nguyen NT
    Anal Chem; 2019 Mar; 91(6):4077-4084. PubMed ID: 30669838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse-interface lattice Boltzmann modeling of charged particle transport in Poiseuille flow.
    Liu J; Chai Z; Shi B
    Phys Rev E; 2022 Jul; 106(1-2):015306. PubMed ID: 35974528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized formula for inertial lift on a sphere in microchannels.
    Liu C; Xue C; Sun J; Hu G
    Lab Chip; 2016 Mar; 16(5):884-92. PubMed ID: 26794086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisit of wall-induced lateral migration in particle electrophoresis through a straight rectangular microchannel: Effects of particle zeta potential.
    Liu Z; Li D; Saffarian M; Tzeng TR; Song Y; Pan X; Xuan X
    Electrophoresis; 2019 Mar; 40(6):955-960. PubMed ID: 30004121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic particle sorting utilizing inertial lift force.
    Nieuwstadt HA; Seda R; Li DS; Fowlkes JB; Bull JL
    Biomed Microdevices; 2011 Feb; 13(1):97-105. PubMed ID: 20865451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input.
    Tottori N; Nisisako T
    Lab Chip; 2020 Jun; 20(11):1999-2008. PubMed ID: 32373868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.