These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30404370)

  • 1. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing.
    Wang J; Zhao J; Wang Y; Wang W; Gao Y; Xu R; Zhao W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging.
    Wang Y; Wang J; Wang T; Wang C
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.
    Wang J; Sun J; Song Y; Xu Y; Pan X; Sun Y; Li D
    Sensors (Basel); 2013 Nov; 13(12):16075-89. PubMed ID: 24287532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization.
    Wang Y; Wang J; Zhou C; Ding G; Chen M; Zou J; Wang G; Kang Y; Pan X
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Changeable Lab-on-a-Chip Detector for Marine Nonindigenous Microorganisms in Ship's Ballast Water.
    Maw MM; Pan X; Peng Z; Wang Y; Zhao L; Dai B; Wang J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous particle counting and detecting on a chip.
    Wu X; Chon CH; Wang YN; Kang Y; Li D
    Lab Chip; 2008 Nov; 8(11):1943-9. PubMed ID: 18941697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals.
    Bi R; Yang J; Huang C; Zhang X; Liao R; Ma H
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of viability of micro-algae cells by optofluidic hologram pattern.
    Wang J; Yu X; Wang Y; Pan X; Li D
    Biomicrofluidics; 2018 Mar; 12(2):024111. PubMed ID: 29657655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution.
    Wang J; Fan Z; Zhao Y; Song Y; Chu H; Song W; Song Y; Pan X; Sun Y; Li D
    Sci Rep; 2016 Mar; 6():23165. PubMed ID: 26983800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water.
    Wang H; Liao R; Xiong Z; Wang Z; Li J; Zhou Q; Tao Y; Ma H
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic cytometers with integrated on-chip optical systems for red blood cell and platelet counting.
    Zhao Y; Li Q; Hu X; Lo Y
    Biomicrofluidics; 2016 Nov; 10(6):064119. PubMed ID: 28058085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Routine Management of Microalgae Using Autofluorescence from Chlorophyll.
    Takahashi T
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S; Kim KH; Kim HC; Chung TD
    Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.
    Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS
    Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative viability detection for a single microalgae cell by two-level photoexcitation.
    Ding G; Wang J; Wang L; Zou J; Tian P; Zhang Y; Pan X; Li D
    Analyst; 2020 Jun; 145(11):3931-3938. PubMed ID: 32314762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.