BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30404375)

  • 1. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility.
    Liu Z; Xu W; Hou Z; Wu Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction.
    Deng T; Wu H; Brittain ST; Whitesides GM
    Anal Chem; 2000 Jul; 72(14):3176-80. PubMed ID: 10939384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft lithography: masters on demand.
    Abdelgawad M; Watson MW; Young EW; Mudrik JM; Ungrin MD; Wheeler AR
    Lab Chip; 2008 Aug; 8(8):1379-85. PubMed ID: 18651082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond fabricated photomasks for fabrication of microfluidic devices.
    Day D; Gu M
    Opt Express; 2006 Oct; 14(22):10753-8. PubMed ID: 19529484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping for high-pressure microfluidics.
    Rein C; Toner M; Sevenler D
    Sci Rep; 2023 Jan; 13(1):1232. PubMed ID: 36683072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLASH: a rapid method for prototyping paper-based microfluidic devices.
    Martinez AW; Phillips ST; Wiley BJ; Gupta M; Whitesides GM
    Lab Chip; 2008 Dec; 8(12):2146-50. PubMed ID: 19023478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.
    Yuen PK; Goral VN
    Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization.
    Khoury C; Mensing GA; Beebe DJ
    Lab Chip; 2002 Feb; 2(1):50-5. PubMed ID: 15100862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pysanky to Microfluidics: An Innovative Wax-Based Approach to Low Cost, Rapid Prototyping of Microfluidic Devices.
    Schneider PJ; Christie LB; Eadie NM; Siskar TJ; Sukhotskiy V; Koh D; Wang A; Oh KW
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.