BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30404375)

  • 21. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid prototyping for injection moulded integrated microfluidic devices and diffractive element arrays.
    Hulme JP; Mohr S; Goddard NJ; Fielden PR
    Lab Chip; 2002 Nov; 2(4):203-6. PubMed ID: 15100811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices.
    da Silva ENT; Ferreira VS; Lucca BG
    Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask.
    Wu CY; Hsieh H; Lee YC
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid prototyping of microstructures by soft lithography for biotechnology.
    Wolfe DB; Qin D; Whitesides GM
    Methods Mol Biol; 2010; 583():81-107. PubMed ID: 19763460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion.
    Taylor AW; Harris DM
    Rev Sci Instrum; 2019 Nov; 90(11):116102. PubMed ID: 31779402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing.
    McDonald JC; Chabinyc ML; Metallo SJ; Anderson JR; Stroock AD; Whitesides GM
    Anal Chem; 2002 Apr; 74(7):1537-45. PubMed ID: 12033242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.
    Carlborg CF; Haraldsson T; Öberg K; Malkoch M; van der Wijngaart W
    Lab Chip; 2011 Sep; 11(18):3136-47. PubMed ID: 21804987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-Cost, Accessible Fabrication Methods for Microfluidics Research in Low-Resource Settings.
    Nguyen HT; Thach H; Roy E; Huynh K; Perrault CM
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
    Wlodarczyk KL; Hand DP; Maroto-Valer MM
    Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells.
    Hwang H; Kang G; Yeon JH; Nam Y; Park JK
    Lab Chip; 2009 Jan; 9(1):167-70. PubMed ID: 19209351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene.
    Nargang TM; Brockmann L; Nikolov PM; Schild D; Helmer D; Keller N; Sachsenheimer K; Wilhelm E; Pires L; Dirschka M; Kolew A; Schneider M; Worgull M; Giselbrecht S; Neumann C; Rapp BE
    Lab Chip; 2014 Aug; 14(15):2698-708. PubMed ID: 24887072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices.
    Lai X; Pu Z; Yu H; Li D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing.
    Cosson S; Aeberli LG; Brandenberg N; Lutolf MP
    Lab Chip; 2015 Jan; 15(1):72-6. PubMed ID: 25373917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maskless photolithography using UV LEDs.
    Guijt RM; Breadmore MC
    Lab Chip; 2008 Aug; 8(8):1402-4. PubMed ID: 18651086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.
    Berenguel-Alonso M; Sabés-Alsina M; Morató R; Ymbern O; Rodríguez-Vázquez L; Talló-Parra O; Alonso-Chamarro J; Puyol M; López-Béjar M
    SLAS Technol; 2017 Jan; ():2472630316684625. PubMed ID: 28346053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.