These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 30404395)
1. Free-Standing GaMnAs Nanomachined Sheets for van der Pauw Magnetotransport Measurements. Lee JH; Park S; Yang C; Choi HK; Cho MR; Cho SU; Park YD Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404395 [TBL] [Abstract][Full Text] [Related]
2. Nanomachining-enabled strain manipulation of magnetic anisotropy in the free-standing GaMnAs nanostructures. Yang C; Lee JH; Jo M; Choi HK; Park S; Kim YD; Cho SU; Kim D; Park YD Sci Rep; 2019 Sep; 9(1):13633. PubMed ID: 31541149 [TBL] [Abstract][Full Text] [Related]
3. Magnetization reversal in trilayer structures consisting of GaMnAs layers with opposite signs of anisotropic magnetoresistance. Lee KJ; Lee S; Bac SK; Choi S; Lee H; Chang J; Choi S; Chongthanaphisut P; Lee S; Liu X; Dobrowolska M; Furdyna JK Sci Rep; 2018 Feb; 8(1):2288. PubMed ID: 29396557 [TBL] [Abstract][Full Text] [Related]
4. Application of the van der Pauw method for electrical conductivity measurements at high temperatures using an insulating compressing ring. Bowen MS; Cann DP; Woodside CR Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37930251 [TBL] [Abstract][Full Text] [Related]
5. Highly sensitive p-type 4H-SiC van der Pauw sensor. Nguyen TK; Phan HP; Han J; Dinh T; Md Foisal AR; Dimitrijev S; Zhu Y; Nguyen NT; Dao DV RSC Adv; 2018 Jan; 8(6):3009-3013. PubMed ID: 35541213 [TBL] [Abstract][Full Text] [Related]
6. In situ measurements of electrical resistivity of metals in a cubic multi-anvil apparatus by van der Pauw method. Yang F; Hu X; Fei Y Rev Sci Instrum; 2022 May; 93(5):053902. PubMed ID: 35649814 [TBL] [Abstract][Full Text] [Related]
7. Magnetization reversal and interlayer exchange coupling in ferromagnetic metal/semiconductor Fe/GaMnAs hybrid bilayers. Tivakornsasithorn K; Yoo T; Lee H; Lee S; Choi S; Bac SK; Lee KJ; Lee S; Liu X; Dobrowolska M; Furdyna JK Sci Rep; 2018 Jul; 8(1):10570. PubMed ID: 30002501 [TBL] [Abstract][Full Text] [Related]
8. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist. Reveil M; Sorg VC; Cheng ER; Ezzyat T; Clancy P; Thompson MO Rev Sci Instrum; 2017 Sep; 88(9):094704. PubMed ID: 28964185 [TBL] [Abstract][Full Text] [Related]
9. Hard magnetic properties in nanoflake van der Waals Fe Tan C; Lee J; Jung SG; Park T; Albarakati S; Partridge J; Field MR; McCulloch DG; Wang L; Lee C Nat Commun; 2018 Apr; 9(1):1554. PubMed ID: 29674662 [TBL] [Abstract][Full Text] [Related]
10. Field-free manipulation of magnetization alignments in a Fe/GaAs/GaMnAs multilayer by spin-orbit-induced magnetic fields. Lee S; Yoo T; Bac SK; Choi S; Lee H; Lee S; Liu X; Dobrowolska M; Furdyna JK Sci Rep; 2017 Aug; 7(1):10162. PubMed ID: 28860474 [TBL] [Abstract][Full Text] [Related]
12. Easy and computer-time-saving implementation of the van der Pauw method including anisotropy and probe positioning correction factors using approximate closed-form analytical functions. Hurand S; Chommaux T; Renault PO; Girardeau T; Paumier F Rev Sci Instrum; 2022 May; 93(5):053907. PubMed ID: 35649772 [TBL] [Abstract][Full Text] [Related]
13. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method. Rolin C; Kang E; Lee JH; Borghs G; Heremans P; Genoe J Nat Commun; 2017 Apr; 8():14975. PubMed ID: 28397852 [TBL] [Abstract][Full Text] [Related]
14. High mobility In Chen C; Holmes SN; Farrer I; Beere HE; Ritchie DA J Phys Condens Matter; 2018 Mar; 30(10):105705. PubMed ID: 29451866 [TBL] [Abstract][Full Text] [Related]
15. Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients: Generalization of the van der Pauw Method. Zhou W; Yoo HM; Prabhu-Gaunkar S; Tiemann L; Reichl C; Wegscheider W; Grayson M Phys Rev Lett; 2015 Oct; 115(18):186804. PubMed ID: 26565488 [TBL] [Abstract][Full Text] [Related]
16. Consideration of bending and buckling behaviors of monolayer and multilayer graphene sheets. Ranjbartoreh AR; Wang G J Nanosci Nanotechnol; 2012 Feb; 12(2):1395-7. PubMed ID: 22629964 [TBL] [Abstract][Full Text] [Related]
17. Offset reduction in Hall effect measurements using a nonswitching van der Pauw technique. Riss O; Shaked E; Karpovsky M; Gerber A Rev Sci Instrum; 2008 Jul; 79(7):073901. PubMed ID: 18681710 [TBL] [Abstract][Full Text] [Related]
18. Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe Wang H; Liu Y; Wu P; Hou W; Jiang Y; Li X; Pandey C; Chen D; Yang Q; Wang H; Wei D; Lei N; Kang W; Wen L; Nie T; Zhao W; Wang KL ACS Nano; 2020 Aug; 14(8):10045-10053. PubMed ID: 32686930 [TBL] [Abstract][Full Text] [Related]
19. Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films. Yao Y; Duan X; Luo J; Liu T Nanotechnology; 2017 Nov; 28(44):445501. PubMed ID: 28975894 [TBL] [Abstract][Full Text] [Related]
20. Scalable Quantum Integrated Circuits on Superconducting Two-Dimensional Electron Gas Platform. Delfanazari K; Ma P; Puddy R; Yi T; Cao M; Gul Y; Richardson CL; Farrer I; Ritchie D; Joyce HJ; Kelly MJ; Smith CG J Vis Exp; 2019 Aug; (150):. PubMed ID: 31424429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]