These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity. Liu R; Glover KP; Feasel MG; Wallqvist A J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366 [TBL] [Abstract][Full Text] [Related]
3. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks? Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667 [TBL] [Abstract][Full Text] [Related]
4. The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity. Sheridan RP J Chem Inf Model; 2015 Jun; 55(6):1098-107. PubMed ID: 25998559 [TBL] [Abstract][Full Text] [Related]
5. Rank order entropy: why one metric is not enough. McLellan MR; Ryan MD; Breneman CM J Chem Inf Model; 2011 Sep; 51(9):2302-19. PubMed ID: 21875058 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of QSAR Equations for Virtual Screening. Spiegel J; Senderowitz H Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive ensemble in QSAR prediction for drug discovery. Kwon S; Bae H; Jo J; Yoon S BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545 [TBL] [Abstract][Full Text] [Related]
8. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
9. Assessment of machine learning reliability methods for quantifying the applicability domain of QSAR regression models. Toplak M; Močnik R; Polajnar M; Bosnić Z; Carlsson L; Hasselgren C; Demšar J; Boyer S; Zupan B; Stålring J J Chem Inf Model; 2014 Feb; 54(2):431-41. PubMed ID: 24490838 [TBL] [Abstract][Full Text] [Related]
10. Three useful dimensions for domain applicability in QSAR models using random forest. Sheridan RP J Chem Inf Model; 2012 Mar; 52(3):814-23. PubMed ID: 22385389 [TBL] [Abstract][Full Text] [Related]
11. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules. Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR J Comput Aided Mol Des; 2007 Sep; 21(9):485-98. PubMed ID: 17632688 [TBL] [Abstract][Full Text] [Related]
12. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models. Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587 [TBL] [Abstract][Full Text] [Related]
13. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
14. Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set. Sushko I; Novotarskyi S; Körner R; Pandey AK; Cherkasov A; Li J; Gramatica P; Hansen K; Schroeter T; Müller KR; Xi L; Liu H; Yao X; Öberg T; Hormozdiari F; Dao P; Sahinalp C; Todeschini R; Polishchuk P; Artemenko A; Kuz'min V; Martin TM; Young DM; Fourches D; Muratov E; Tropsha A; Baskin I; Horvath D; Marcou G; Muller C; Varnek A; Prokopenko VV; Tetko IV J Chem Inf Model; 2010 Dec; 50(12):2094-111. PubMed ID: 21033656 [TBL] [Abstract][Full Text] [Related]
15. Merging applicability domains for in silico assessment of chemical mutagenicity. Liu R; Wallqvist A J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696 [TBL] [Abstract][Full Text] [Related]
16. All-Assay-Max2 pQSAR: Activity Predictions as Accurate as Four-Concentration IC Martin EJ; Polyakov VR; Zhu XW; Tian L; Mukherjee P; Liu X J Chem Inf Model; 2019 Oct; 59(10):4450-4459. PubMed ID: 31518124 [TBL] [Abstract][Full Text] [Related]
17. Deep neural nets as a method for quantitative structure-activity relationships. Ma J; Sheridan RP; Liaw A; Dahl GE; Svetnik V J Chem Inf Model; 2015 Feb; 55(2):263-74. PubMed ID: 25635324 [TBL] [Abstract][Full Text] [Related]
18. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches. Mora JR; Marrero-Ponce Y; García-Jacas CR; Suarez Causado A Chem Res Toxicol; 2020 Jul; 33(7):1855-1873. PubMed ID: 32406679 [TBL] [Abstract][Full Text] [Related]
20. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]