BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30404602)

  • 21. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa.
    Kaundal R; Duhan N; Acharya BR; Pudussery MV; Ferreira JFS; Suarez DL; Sandhu D
    Sci Rep; 2021 Mar; 11(1):5210. PubMed ID: 33664362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in
    Huang X; Liu L; Qiang X; Meng Y; Li Z; Huang F
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process.
    Liu ZY; Baoyin T; Li XL; Wang ZL
    BMC Plant Biol; 2019 May; 19(1):205. PubMed ID: 31109303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering.
    Nie S; Li C; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Xie Y; Liu L
    BMC Genomics; 2016 May; 17():389. PubMed ID: 27216755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in phenotype and gene expression under lead stress revealed key genetic responses to lead tolerance in Medicago sativa L.
    Wang Y; Meng Y; Mu S; Yan D; Xu X; Zhang L; Xu B
    Gene; 2021 Jul; 791():145714. PubMed ID: 33979680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population.
    Gruber MY; Xia J; Yu M; Steppuhn H; Wall K; Messer D; Sharpe AG; Acharya SN; Wishart DS; Johnson D; Miller DR; Taheri A
    Genome; 2017 Feb; 60(2):104-127. PubMed ID: 28045337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.).
    Medina CA; Samac DA; Yu LX
    Sci Rep; 2021 Aug; 11(1):17203. PubMed ID: 34446782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis and identification of abscisic acid and gibberellin-related genes during seed development of alfalfa (Medicago sativa L.).
    Zhao L; Li M; Ma X; Luo D; Zhou Q; Liu W; Liu Z
    BMC Genomics; 2022 Sep; 23(1):651. PubMed ID: 36100883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arbuscular mycorrhizal fungus alleviates alfalfa leaf spots caused by Phoma medicaginis revealed by RNA-seq analysis.
    Li Y; Duan T; Nan Z; Li Y
    J Appl Microbiol; 2021 Feb; 130(2):547-560. PubMed ID: 31310670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of
    Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D
    J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769
    [No Abstract]   [Full Text] [Related]  

  • 31. Transcriptome profiling of flower buds of male-sterile lines provides new insights into male sterility mechanism in alfalfa.
    Xu B; Wu R; Shi F; Gao C; Wang J
    BMC Plant Biol; 2022 Apr; 22(1):199. PubMed ID: 35428186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.).
    Yang J; Yi J; Ma S; Wang Y; Song J; Li S; Feng Y; Sun H; Gao C; Yang R; Li Z; Cao Y; Yang P
    BMC Genomics; 2024 Feb; 25(1):174. PubMed ID: 38350871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.
    Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY
    BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen reserves, spring regrowth and winter survival of field-grown alfalfa (Medicago sativa) defoliated in the autumn.
    Dhont C; Castonguay Y; Nadeau P; Bélanger G; Drapeau R; Laberge S; Avice JC; Chalifour FP
    Ann Bot; 2006 Jan; 97(1):109-20. PubMed ID: 16260440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits.
    Biselli C; Bagnaresi P; Cavalluzzo D; Urso S; Desiderio F; Orasen G; Gianinetti A; Righettini F; Gennaro M; Perrini R; Ben Hassen M; Sacchi GA; Cattivelli L; Valè G
    BMC Genomics; 2015 Dec; 16():1091. PubMed ID: 26689934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms.
    Ma Q; Xu X; Wang W; Zhao L; Ma D; Xie Y
    Plant Physiol Biochem; 2021 Sep; 166():203-214. PubMed ID: 34118683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding.
    Chen S; Cai Y; Zhang L; Yan X; Cheng L; Qi D; Zhou Q; Li X; Liu G
    PLoS One; 2014; 9(2):e89495. PubMed ID: 24586824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.).
    Luo D; Zhou Q; Wu Y; Chai X; Liu W; Wang Y; Yang Q; Wang Z; Liu Z
    BMC Plant Biol; 2019 Jan; 19(1):32. PubMed ID: 30665358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iTRAQ-based comparative proteomic analysis of differences in the protein profiles of stems and leaves from two alfalfa genotypes.
    Sun H; Yu J; Zhang F; Kang J; Li M; Wang Z; Liu W; Zhang J; Yang Q; Long R
    BMC Plant Biol; 2020 Sep; 20(1):447. PubMed ID: 32993512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq.
    Ni Y; Guo N; Zhao Q; Guo Y
    BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.