These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 30404651)

  • 1. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas.
    Hujber Z; Horváth G; Petővári G; Krencz I; Dankó T; Mészáros K; Rajnai H; Szoboszlai N; Leenders WPJ; Jeney A; Tretter L; Sebestyén A
    J Exp Clin Cancer Res; 2018 Nov; 37(1):271. PubMed ID: 30404651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase-deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling.
    Chowdhury GM; Gupta M; Gibson KM; Patel AB; Behar KL
    J Neurochem; 2007 Dec; 103(5):2077-91. PubMed ID: 17854388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.
    Lenting K; Khurshed M; Peeters TH; van den Heuvel CNAM; van Lith SAM; de Bitter T; Hendriks W; Span PN; Molenaar RJ; Botman D; Verrijp K; Heerschap A; Ter Laan M; Kusters B; van Ewijk A; Huynen MA; van Noorden CJF; Leenders WPJ
    FASEB J; 2019 Jan; 33(1):557-571. PubMed ID: 30001166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis.
    Ludewig F; Hüser A; Fromm H; Beauclair L; Bouché N
    PLoS One; 2008; 3(10):e3383. PubMed ID: 18846220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma.
    El-Habr EA; Dubois LG; Burel-Vandenbos F; Bogeas A; Lipecka J; Turchi L; Lejeune FX; Coehlo PL; Yamaki T; Wittmann BM; Fareh M; Mahfoudhi E; Janin M; Narayanan A; Morvan-Dubois G; Schmitt C; Verreault M; Oliver L; Sharif A; Pallud J; Devaux B; Puget S; Korkolopoulou P; Varlet P; Ottolenghi C; Plo I; Moura-Neto V; Virolle T; Chneiweiss H; Junier MP
    Acta Neuropathol; 2017 Apr; 133(4):645-660. PubMed ID: 28032215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glioma Cells Expressing High Levels of ALDH5A1 Exhibit Enhanced Migration Transcriptional Signature in Patient Tumors.
    Piperi C; Saurty-Seerunghen MS; Levidou G; Sepsa A; Trigka EA; Klonou A; Markouli M; Strepkos D; Spyropoulou A; Kanakoglou DS; Lakiotaki E; Karatrasoglou EA; Boviatsis E; El-Habr EA; Korkolopoulou P
    Neurotherapeutics; 2023 Apr; 20(3):881-895. PubMed ID: 36976494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma.
    Nagashima H; Tanaka K; Sasayama T; Irino Y; Sato N; Takeuchi Y; Kyotani K; Mukasa A; Mizukawa K; Sakata J; Yamamoto Y; Hosoda K; Itoh T; Sasaki R; Kohmura E
    Neuro Oncol; 2016 Nov; 18(11):1559-1568. PubMed ID: 27154922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmitter alterations in embryonic succinate semialdehyde dehydrogenase (SSADH) deficiency suggest a heightened excitatory state during development.
    Jansen EE; Struys E; Jakobs C; Hager E; Snead OC; Gibson KM
    BMC Dev Biol; 2008 Nov; 8():112. PubMed ID: 19040727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal metabolomics in dried bloodspots suggests multipathway disruptions in aldh5a1
    Brown M; Turgeon C; Rinaldo P; Roullet JB; Gibson KM
    Mol Genet Metab; 2019 Dec; 128(4):397-408. PubMed ID: 31699650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency.
    Gupta M; Polinsky M; Senephansiri H; Snead OC; Jansen EE; Jakobs C; Gibson KM
    Neurobiol Dis; 2004 Aug; 16(3):556-62. PubMed ID: 15262267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase.
    Gibson KM; Schor DS; Gupta M; Guerand WS; Senephansiri H; Burlingame TG; Bartels H; Hogema BM; Bottiglieri T; Froestl W; Snead OC; Grompe M; Jakobs C
    J Neurochem; 2002 Apr; 81(1):71-9. PubMed ID: 12067239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria).
    Gibson KM; Gupta M; Pearl PL; Tuchman M; Vezina LG; Snead OC; Smit LM; Jakobs C
    Biol Psychiatry; 2003 Oct; 54(7):763-8. PubMed ID: 14512218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme Replacement Therapy for Succinic Semialdehyde Dehydrogenase Deficiency: Relevance in γ-Aminobutyric Acid Plasticity.
    Lee HHC; Pearl PL; Rotenberg A
    J Child Neurol; 2021 Nov; 36(13-14):1200-1209. PubMed ID: 33624531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.
    Khurshed M; Molenaar RJ; Lenting K; Leenders WP; van Noorden CJF
    Oncotarget; 2017 Jul; 8(30):49165-49177. PubMed ID: 28467784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton MR spectroscopy in succinic semialdehyde dehydrogenase deficiency.
    Ethofer T; Seeger U; Klose U; Erb M; Kardatzki B; Kraft E; Landwehrmeyer GB; Grodd W; Storch A
    Neurology; 2004 Mar; 62(6):1016-8. PubMed ID: 15037717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions for (13)C NMR detection of 2-hydroxyglutarate in tissue extracts from isocitrate dehydrogenase-mutated gliomas.
    Pichumani K; Mashimo T; Baek HM; Ratnakar J; Mickey B; DeBerardinis RJ; Maher EA; Bachoo RM; Malloy CR; Kovacs Z
    Anal Biochem; 2015 Jul; 481():4-6. PubMed ID: 25908561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and structural characterization for cofactor preference of succinic semialdehyde dehydrogenase from Streptococcus pyogenes.
    Jang EH; Park SA; Chi YM; Lee KS
    Mol Cells; 2014 Oct; 37(10):719-26. PubMed ID: 25256219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation.
    Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C
    Neurochem Int; 2017 Oct; 109():41-53. PubMed ID: 28300620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.
    Pearl PL; Gibson KM; Quezado Z; Dustin I; Taylor J; Trzcinski S; Schreiber J; Forester K; Reeves-Tyer P; Liew C; Shamim S; Herscovitch P; Carson R; Butman J; Jakobs C; Theodore W
    Neurology; 2009 Aug; 73(6):423-9. PubMed ID: 19667317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment.
    Subramani E; Radoul M; Najac C; Batsios G; Molloy AR; Hong D; Gillespie AM; Santos RD; Viswanath P; Costello JF; Pieper RO; Ronen SM
    Cancer Res; 2020 Nov; 80(22):5098-5108. PubMed ID: 32958546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.