These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30405060)

  • 41. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems.
    Wu Y; Wang Z; Qiao X; Li J; Shu X; Qi H
    Front Bioeng Biotechnol; 2020; 8():863. PubMed ID: 32793583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupling genetic code expansion and metabolic engineering for synthetic cells.
    Völler JS; Budisa N
    Curr Opin Biotechnol; 2017 Dec; 48():1-7. PubMed ID: 28237511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saturation of recognition elements blocks evolution of new tRNA identities.
    Saint-Léger A; Bello C; Dans PD; Torres AG; Novoa EM; Camacho N; Orozco M; Kondrashov FA; Ribas de Pouplana L
    Sci Adv; 2016 Apr; 2(4):e1501860. PubMed ID: 27386510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase.
    Herring S; Ambrogelly A; Polycarpo CR; Söll D
    Nucleic Acids Res; 2007; 35(4):1270-8. PubMed ID: 17267409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Expanding genetic code: amino acids 21 and 22--selenocysteine and pyrrolysine].
    Lukashenko NP
    Genetika; 2010 Aug; 46(8):1013-32. PubMed ID: 20873198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR; Herring S; Bérubé A; Wood JL; Söll D; Ambrogelly A
    FEBS Lett; 2006 Dec; 580(28-29):6695-700. PubMed ID: 17126325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
    Ho JM; Reynolds NM; Rivera K; Connolly M; Guo LT; Ling J; Pappin DJ; Church GM; Söll D
    ACS Synth Biol; 2016 Feb; 5(2):163-71. PubMed ID: 26544153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Plasmid-Based System for Efficient Noncanonical Amino Acid Mutagenesis in Cultured Mammalian Cells.
    Cohen S; Arbely E
    Chembiochem; 2016 Jun; 17(11):1008-11. PubMed ID: 27120490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures.
    Ohtsuki T; Manabe T; Sisido M
    FEBS Lett; 2005 Dec; 579(30):6769-74. PubMed ID: 16310775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. tRNA engineering for manipulating genetic code.
    Katoh T; Iwane Y; Suga H
    RNA Biol; 2018; 15(4-5):453-460. PubMed ID: 28722545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Application of Cell-Free Protein Synthesis in Genetic Code Expansion for Post-translational Modifications.
    Venkat S; Chen H; Gan Q; Fan C
    Front Pharmacol; 2019; 10():248. PubMed ID: 30949051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization.
    Wolf YI; Koonin EV
    Biol Direct; 2007 May; 2():14. PubMed ID: 17540026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rewiring protein synthesis: From natural to synthetic amino acids.
    Fan Y; Evans CR; Ling J
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3024-3029. PubMed ID: 28095316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolving tRNA(Sec) for efficient canonical incorporation of selenocysteine.
    Thyer R; Robotham SA; Brodbelt JS; Ellington AD
    J Am Chem Soc; 2015 Jan; 137(1):46-9. PubMed ID: 25521771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tackling Achilles' Heel in Synthetic Biology: Pairing Intracellular Synthesis of Noncanonical Amino Acids with Genetic-Code Expansion to Foster Biotechnological Applications.
    Biava HD
    Chembiochem; 2020 May; 21(9):1265-1273. PubMed ID: 31868982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA.
    Théobald-Dietrich A; Frugier M; Giegé R; Rudinger-Thirion J
    Nucleic Acids Res; 2004; 32(3):1091-6. PubMed ID: 14872064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
    Polycarpo C; Ambrogelly A; Bérubé A; Winbush SM; McCloskey JA; Crain PF; Wood JL; Söll D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12450-4. PubMed ID: 15314242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.