These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3040519)

  • 1. Hormonal regulation of hepatic glycogenolysis in the toad, Xenopus laevis, is mediated by cyclic AMP and not Ca2+.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1987 Aug; 67(2):227-33. PubMed ID: 3040519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-independent stimulation of glycogenolysis by arginine vasotocin and catecholamines in liver of the axolotl (Ambystoma mexicanum) in vitro.
    Janssens PA; Kleineke J; Caine AG
    J Endocrinol; 1986 Apr; 109(1):75-84. PubMed ID: 3701246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic regulation of glycogenolysis in liver of Xenopus laevis in vitro.
    Janssens PA; Grigg JA
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):403-8. PubMed ID: 6144450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormones regulating hepatic glycogenolysis in two chelonians use cyclic AMP, and not Ca2+, as intracellular messenger.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1992 Oct; 88(1):117-27. PubMed ID: 1385260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal-rat hepatocytes.
    Freemark M; Handwerger S
    Biochem J; 1984 Jun; 220(2):441-5. PubMed ID: 6430282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal response of primary hepatocytes of the clawed toad, Xenopus laevis.
    Ade T; Segner H; Hanke W
    Exp Clin Endocrinol Diabetes; 1995; 103(1):21-7. PubMed ID: 7621101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin counters the glycogenolytic effect of arginine vasotocin in liver pieces from the axolotl, Ambystoma mexicanum, cultured in vitro.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1993 Feb; 89(2):176-81. PubMed ID: 7681019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of basal hepatic glycogenolysis by nitric oxide.
    Borgs M; Bollen M; Keppens S; Yap SH; Stalmans W; Vanstapel F
    Hepatology; 1996 Jun; 23(6):1564-71. PubMed ID: 8675178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon and insulin regulate in vitro hepatic glycogenolysis in the axolotl Ambystoma mexicanum via changes in tissue cyclic AMP concentration.
    Janssens PA; Maher F
    Gen Comp Endocrinol; 1986 Jan; 61(1):64-70. PubMed ID: 2416634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the role of cyclic guanosine 3':5'-monophosphate and extracellular Ca2+ in the regulation of glycogenolysis in rat liver cells.
    Pointer RH; Butcher FR; Fain JN
    J Biol Chem; 1976 May; 251(10):2987-92. PubMed ID: 178660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of glycogenolysis by the reduction in the extracellular calcium concentration in verapamil-perfused rat liver.
    Koide Y; Kimura S; Tada R; Kugai N; Yamashita K
    Biochem Pharmacol; 1983 Feb; 32(3):517-22. PubMed ID: 6303349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal control of glycogenolysis and the mechanism of action of adrenaline in amphibian liver in vitro.
    Janssens PA; Caine AG; Dixon JE
    Gen Comp Endocrinol; 1983 Mar; 49(3):477-84. PubMed ID: 6301936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hepatic glycogenolysis by glucagon in male and female rats. Role of cAMP and Ca2+ and interactions between epinephrine and glucagon.
    Studer RK; Snowdowne KW; Borle AB
    J Biol Chem; 1984 Mar; 259(6):3596-604. PubMed ID: 6323432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: extracellular origin and control by cAMP.
    Kleineke JW; Janssens PA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1281-8. PubMed ID: 8238480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse.
    Grau M; Soley M; Ramírez I
    Endocrinology; 1997 Jun; 138(6):2601-9. PubMed ID: 9165054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormone-stimulated glycogenolysis in isolated goldfish hepatocytes.
    Birnbaum MJ; Schultz J; Fain JN
    Am J Physiol; 1976 Jul; 231(1):191-7. PubMed ID: 183509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of E-series prostaglandins on cyclic AMP-dependent and -independent hormone-stimulated glycogenolysis in hepatocytes.
    Brass EP; Garrity MJ
    Diabetes; 1985 Mar; 34(3):291-4. PubMed ID: 2982682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose production and glycogen cycle enzyme activities in avian liver explants: procedural optimization.
    Rosebrough RW; Von Vleck MF
    Comp Biochem Physiol B; 1990; 96(1):163-70. PubMed ID: 2163806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver.
    Buxton DB; Robertson SM; Olson MS
    Biochem J; 1986 Aug; 237(3):773-80. PubMed ID: 3026332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.