BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3040519)

  • 1. Hormonal regulation of hepatic glycogenolysis in the toad, Xenopus laevis, is mediated by cyclic AMP and not Ca2+.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1987 Aug; 67(2):227-33. PubMed ID: 3040519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-independent stimulation of glycogenolysis by arginine vasotocin and catecholamines in liver of the axolotl (Ambystoma mexicanum) in vitro.
    Janssens PA; Kleineke J; Caine AG
    J Endocrinol; 1986 Apr; 109(1):75-84. PubMed ID: 3701246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic regulation of glycogenolysis in liver of Xenopus laevis in vitro.
    Janssens PA; Grigg JA
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):403-8. PubMed ID: 6144450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormones regulating hepatic glycogenolysis in two chelonians use cyclic AMP, and not Ca2+, as intracellular messenger.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1992 Oct; 88(1):117-27. PubMed ID: 1385260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal-rat hepatocytes.
    Freemark M; Handwerger S
    Biochem J; 1984 Jun; 220(2):441-5. PubMed ID: 6430282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal response of primary hepatocytes of the clawed toad, Xenopus laevis.
    Ade T; Segner H; Hanke W
    Exp Clin Endocrinol Diabetes; 1995; 103(1):21-7. PubMed ID: 7621101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin counters the glycogenolytic effect of arginine vasotocin in liver pieces from the axolotl, Ambystoma mexicanum, cultured in vitro.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1993 Feb; 89(2):176-81. PubMed ID: 7681019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of basal hepatic glycogenolysis by nitric oxide.
    Borgs M; Bollen M; Keppens S; Yap SH; Stalmans W; Vanstapel F
    Hepatology; 1996 Jun; 23(6):1564-71. PubMed ID: 8675178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon and insulin regulate in vitro hepatic glycogenolysis in the axolotl Ambystoma mexicanum via changes in tissue cyclic AMP concentration.
    Janssens PA; Maher F
    Gen Comp Endocrinol; 1986 Jan; 61(1):64-70. PubMed ID: 2416634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the role of cyclic guanosine 3':5'-monophosphate and extracellular Ca2+ in the regulation of glycogenolysis in rat liver cells.
    Pointer RH; Butcher FR; Fain JN
    J Biol Chem; 1976 May; 251(10):2987-92. PubMed ID: 178660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of glycogenolysis by the reduction in the extracellular calcium concentration in verapamil-perfused rat liver.
    Koide Y; Kimura S; Tada R; Kugai N; Yamashita K
    Biochem Pharmacol; 1983 Feb; 32(3):517-22. PubMed ID: 6303349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal control of glycogenolysis and the mechanism of action of adrenaline in amphibian liver in vitro.
    Janssens PA; Caine AG; Dixon JE
    Gen Comp Endocrinol; 1983 Mar; 49(3):477-84. PubMed ID: 6301936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hepatic glycogenolysis by glucagon in male and female rats. Role of cAMP and Ca2+ and interactions between epinephrine and glucagon.
    Studer RK; Snowdowne KW; Borle AB
    J Biol Chem; 1984 Mar; 259(6):3596-604. PubMed ID: 6323432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: extracellular origin and control by cAMP.
    Kleineke JW; Janssens PA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1281-8. PubMed ID: 8238480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse.
    Grau M; Soley M; Ramírez I
    Endocrinology; 1997 Jun; 138(6):2601-9. PubMed ID: 9165054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormone-stimulated glycogenolysis in isolated goldfish hepatocytes.
    Birnbaum MJ; Schultz J; Fain JN
    Am J Physiol; 1976 Jul; 231(1):191-7. PubMed ID: 183509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of E-series prostaglandins on cyclic AMP-dependent and -independent hormone-stimulated glycogenolysis in hepatocytes.
    Brass EP; Garrity MJ
    Diabetes; 1985 Mar; 34(3):291-4. PubMed ID: 2982682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose production and glycogen cycle enzyme activities in avian liver explants: procedural optimization.
    Rosebrough RW; Von Vleck MF
    Comp Biochem Physiol B; 1990; 96(1):163-70. PubMed ID: 2163806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of glycogenolysis by adenine nucleotides in the perfused rat liver.
    Buxton DB; Robertson SM; Olson MS
    Biochem J; 1986 Aug; 237(3):773-80. PubMed ID: 3026332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.