These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Exploiting defective RRAM array as synapses of HTM spatial pooler with boost-factor adjustment scheme for defect-tolerant neuromorphic systems. Woo J; Van Nguyen T; Kim JH; Im JP; Im S; Kim Y; Min KS; Moon SE Sci Rep; 2020 Jul; 10(1):11703. PubMed ID: 32678139 [TBL] [Abstract][Full Text] [Related]
7. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284 [TBL] [Abstract][Full Text] [Related]
8. Effect of Initial Synaptic State on Pattern Classification Accuracy of 3D Vertical Resistive Random Access Memory (VRRAM) Synapses. Sun W; Choi S; Kim B; Shin H J Nanosci Nanotechnol; 2020 Aug; 20(8):4730-4734. PubMed ID: 32126648 [TBL] [Abstract][Full Text] [Related]
9. Quantum Dots for Resistive Switching Memory and Artificial Synapse. Kim G; Park S; Kim S Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404302 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel-Based Artificial Synapses for Sustainable Neuromorphic Electronics. Yan J; Armstrong JPK; Scarpa F; Perriman AW Adv Mater; 2024 Sep; 36(38):e2403937. PubMed ID: 39087845 [TBL] [Abstract][Full Text] [Related]
11. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing. Zahoor F; Hussin FA; Isyaku UB; Gupta S; Khanday FA; Chattopadhyay A; Abbas H Discov Nano; 2023 Mar; 18(1):36. PubMed ID: 37382679 [TBL] [Abstract][Full Text] [Related]
12. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing. Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122 [TBL] [Abstract][Full Text] [Related]
13. A Novel Resistive Switching Identification Method through Relaxation Characteristics for Sneak-path-constrained Selectorless RRAM application. Chen YC; Lin CC; Hu ST; Lin CY; Fowler B; Lee J Sci Rep; 2019 Aug; 9(1):12420. PubMed ID: 31455881 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device. Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317 [TBL] [Abstract][Full Text] [Related]
15. Recent Progress in Solution-Based Metal Oxide Resistive Switching Devices. Carlos E; Branquinho R; Martins R; Kiazadeh A; Fortunato E Adv Mater; 2021 Feb; 33(7):e2004328. PubMed ID: 33314334 [TBL] [Abstract][Full Text] [Related]
17. Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices. Zarudnyi K; Mehonic A; Montesi L; Buckwell M; Hudziak S; Kenyon AJ Front Neurosci; 2018; 12():57. PubMed ID: 29472837 [TBL] [Abstract][Full Text] [Related]
18. Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Zhou G; Li J; Song Q; Wang L; Ren Z; Sun B; Hu X; Wang W; Xu G; Chen X; Cheng L; Zhou F; Duan S Nat Commun; 2023 Dec; 14(1):8489. PubMed ID: 38123562 [TBL] [Abstract][Full Text] [Related]
19. Nonvolatile reconfigurable sequential logic in a HfO Zhou YX; Li Y; Su YT; Wang ZR; Shih LY; Chang TC; Chang KC; Long SB; Sze SM; Miao XS Nanoscale; 2017 May; 9(20):6649-6657. PubMed ID: 28261713 [TBL] [Abstract][Full Text] [Related]
20. Neural Network Training Acceleration With RRAM-Based Hybrid Synapses. Choi W; Kwak M; Kim S; Hwang H Front Neurosci; 2021; 15():690418. PubMed ID: 34248492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]