These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 3040537)
1. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH. Winterbourn CC Free Radic Biol Med; 1987; 3(1):33-9. PubMed ID: 3040537 [TBL] [Abstract][Full Text] [Related]
2. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction. Winterbourn CC; Sutton HC Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338 [TBL] [Abstract][Full Text] [Related]
3. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II). Gutteridge JM; Maidt L; Poyer L Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Winterbourn CC; Sutton HC Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705 [TBL] [Abstract][Full Text] [Related]
5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW; Feierman DE; Cederbaum AI Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321 [TBL] [Abstract][Full Text] [Related]
6. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Gutteridge JM Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032 [TBL] [Abstract][Full Text] [Related]
7. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. Ambruso DR; Johnston RB J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607 [TBL] [Abstract][Full Text] [Related]
8. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates. Vile GF; Winterbourn CC; Sutton HC Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582 [TBL] [Abstract][Full Text] [Related]
9. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction. Tadolini B; Cabrini L Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214 [TBL] [Abstract][Full Text] [Related]
10. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction. Thomas C; Vile GF; Winterbourn CC Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256 [TBL] [Abstract][Full Text] [Related]
11. Comparative sugar degradation by (OH). produced by the iron-driven Fenton reaction and gamma radiolysis. Franzini E; Sellak H; Hakim J; Pasquier C Arch Biochem Biophys; 1994 Mar; 309(2):261-5. PubMed ID: 8135536 [TBL] [Abstract][Full Text] [Related]
12. Chelated iron-catalyzed OH. formation from paraquat radicals and H2O2: mechanism of formate oxidation. Sutton HC; Winterbourn CC Arch Biochem Biophys; 1984 Nov; 235(1):106-15. PubMed ID: 6093704 [TBL] [Abstract][Full Text] [Related]
13. Factors that influence the deoxyribose oxidation assay for Fenton reaction products. Winterbourn CC Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835 [TBL] [Abstract][Full Text] [Related]
14. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Winston GW; Harvey W; Berl L; Cederbaum AI Biochem J; 1983 Nov; 216(2):415-21. PubMed ID: 6318737 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. Gutteridge JM Biochem J; 1984 Dec; 224(3):761-7. PubMed ID: 6098266 [TBL] [Abstract][Full Text] [Related]
16. Pyridoindole stobadine is a potent scavenger of hydroxyl radicals. Stefek M; Benes L FEBS Lett; 1991 Dec; 294(3):264-6. PubMed ID: 1661687 [TBL] [Abstract][Full Text] [Related]
17. Manganese complexes and the generation and scavenging of hydroxyl free radicals. Cheton PL; Archibald FS Free Radic Biol Med; 1988; 5(5-6):325-33. PubMed ID: 2855733 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Chen SX; Schopfer P Eur J Biochem; 1999 Mar; 260(3):726-35. PubMed ID: 10103001 [TBL] [Abstract][Full Text] [Related]
19. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. Miles AM; Bohle DS; Glassbrenner PA; Hansert B; Wink DA; Grisham MB J Biol Chem; 1996 Jan; 271(1):40-7. PubMed ID: 8550595 [TBL] [Abstract][Full Text] [Related]
20. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals. Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]