BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3040538)

  • 1. Free radical modification of low-density lipoprotein: mechanisms and biological consequences.
    Heinecke JW
    Free Radic Biol Med; 1987; 3(1):65-73. PubMed ID: 3040538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-oxidative modification of native low-density lipoprotein by oxidized low-density lipoprotein.
    Yang M; Leake DS; Rice-Evans CA
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):377-80. PubMed ID: 8687375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of defined oxygen-centred free radicals on human low-density lipoprotein.
    Bedwell S; Dean RT; Jessup W
    Biochem J; 1989 Sep; 262(3):707-12. PubMed ID: 2556107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid.
    Morel DW; Hessler JR; Chisolm GM
    J Lipid Res; 1983 Aug; 24(8):1070-6. PubMed ID: 6415194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein.
    Parthasarathy S; Steinbrecher UP; Barnett J; Witztum JL; Steinberg D
    Proc Natl Acad Sci U S A; 1985 May; 82(9):3000-4. PubMed ID: 3857630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins.
    Hazell LJ; Davies MJ; Stocker R
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase.
    Witting PK; Upston JM; Stocker R
    Biochemistry; 1997 Feb; 36(6):1251-8. PubMed ID: 9063873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW; Rosen H; Suzuki LA; Chait A
    J Biol Chem; 1987 Jul; 262(21):10098-103. PubMed ID: 3038867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation.
    Miller YI; Felikman Y; Shaklai N
    Arch Biochem Biophys; 1996 Feb; 326(2):252-60. PubMed ID: 8611031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid peroxidation and its role in atherosclerosis.
    Esterbauer H; Wäg G; Puhl H
    Br Med Bull; 1993 Jul; 49(3):566-76. PubMed ID: 8221023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of delipidated apoprotein B of low density lipoprotein by lipid oxidation products in relation to macrophage scavenger receptor binding.
    Alaiz M; Beppu M; Ohishi K; Kikugawa K
    Biol Pharm Bull; 1994 Jan; 17(1):51-7. PubMed ID: 8148817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipoprotein oxidation in the absence of lipid peroxidation enhances LDL uptake by macrophages.
    Hunt JV; Bailey JR; Schultz DL; McKay AG; Mitchinson MJ
    FEBS Lett; 1994 Aug; 349(3):375-9. PubMed ID: 8050600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical attack of low density lipoprotein decreases its cellular catabolism in the absence of significant lipid peroxidation.
    Frey-Fressart V; Bonnefont-Rousselot D; Gardès-Albert M; Delattre J; Auclair M; Mazière C; Mazière JC
    Biochem Biophys Res Commun; 1995 Mar; 208(2):597-602. PubMed ID: 7695612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein.
    Byun J; Mueller DM; Fabjan JS; Heinecke JW
    FEBS Lett; 1999 Jul; 455(3):243-6. PubMed ID: 10437781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor.
    Parthasarathy S; Fong LG; Otero D; Steinberg D
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):537-40. PubMed ID: 3467373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biochemistry of the physiopathologic and clinical aspects of free radicals in arteriosclerosis].
    Matsuo M
    Nihon Rinsho; 1988 Oct; 46(10):2223-9. PubMed ID: 2853786
    [No Abstract]   [Full Text] [Related]  

  • 17. Site-specific trapping of reactive species in low-density lipoprotein oxidation: biological implications.
    Kalyanaraman B; Joseph J; Parthasarathy S
    Biochim Biophys Acta; 1993 Jun; 1168(2):220-7. PubMed ID: 8389205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased plasma and lipoprotein lipid peroxidation in apo E-deficient mice.
    Hayek T; Oiknine J; Brook JG; Aviram M
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1567-74. PubMed ID: 8024602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol.
    Shin HK; Kim YK; Kim KY; Lee JH; Hong KW
    Circulation; 2004 Mar; 109(8):1022-8. PubMed ID: 14967724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
    Steinbrecher UP; Parthasarathy S; Leake DS; Witztum JL; Steinberg D
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3883-7. PubMed ID: 6587396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.